Menu Close

Author: Tinku Tara

1-pi-6-27-6-pi-12-27-2-12-pi-18-27-3-18-e-pi-a-e-pi-a-2a-Find-a-

Question Number 139481 by Dwaipayan Shikari last updated on 27/Apr/21 $$\mathrm{1}+\frac{\pi^{\mathrm{6}} }{\mathrm{27}.\mathrm{6}!}+\frac{\pi^{\mathrm{12}} }{\mathrm{27}^{\mathrm{2}} .\mathrm{12}!}+\frac{\pi^{\mathrm{18}} }{\mathrm{27}^{\mathrm{3}} .\mathrm{18}!}+…=\frac{{e}^{\frac{\pi}{\:\sqrt{{a}}}} +{e}^{−\frac{\pi}{\:\sqrt{{a}}}} }{\mathrm{2}{a}} \\ $$$${Find}\:{a} \\ $$ Terms of Service…

ditentukan-fungsi-f-R-R-g-R-R-dan-h-R-R-dg-f-x-1-x-4-g-x-3x-dan-h-x-1-rumus-h-o-g-o-f-1-1-x-

Question Number 8411 by arinto27 last updated on 10/Oct/16 $$\mathrm{ditentukan}\:\mathrm{fungsi}\:\mathrm{f}:\mathrm{R}\rightarrow\mathrm{R},\:\mathrm{g}:\mathrm{R}\rightarrow\mathrm{R}\:\mathrm{dan}\:\mathrm{h}:\mathrm{R}\rightarrow\mathrm{R}\: \\ $$$$\mathrm{dg}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}+\mathrm{4}\:}\:,\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{3x}\:\mathrm{dan}\:\mathrm{h}\left(\mathrm{x}\right)=×−\mathrm{1} \\ $$$$\mathrm{rumus}\:\left(\:\mathrm{h}\:\mathrm{o}\:\mathrm{g}\:\mathrm{o}\:\mathrm{f}\:\right)^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)=….? \\ $$$$ \\ $$$$ \\ $$ Answered by sandy_suhendra last…

Question-8410

Question Number 8410 by arinto27 last updated on 10/Oct/16 Answered by ridwan balatif last updated on 10/Oct/16 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{5}−\mathrm{2x},\:\mathrm{g}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{6},\:\mathrm{h}\left(\mathrm{x}\right)=\mathrm{x}−\mathrm{4} \\ $$$$\left(\mathrm{fogoh}\right)\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{g}\left(\mathrm{h}\left(\mathrm{x}\right)\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{f}\left(\mathrm{g}\left(\mathrm{x}−\mathrm{4}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{f}\left(\mathrm{x}+\mathrm{2}\right) \\…

z-z-why-

Question Number 139483 by qaz last updated on 27/Apr/21 $$\Gamma\left(\overset{−} {{z}}\right)=\overline {\Gamma\left({z}\right)}\:\:\:\:{why}? \\ $$ Answered by mnjuly1970 last updated on 27/Apr/21 $$\:\:{hint} \\ $$$$\:\:\Gamma\left({z}\right)={e}^{−\gamma{z}} \frac{\mathrm{1}}{{z}}\:\underset{{k}=\mathrm{1}}…

Question-139476

Question Number 139476 by aliibrahim1 last updated on 27/Apr/21 Answered by qaz last updated on 27/Apr/21 $${I}=\int\frac{{dx}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)…\left({x}+{n}\right)} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)…\left({x}+{n}\right)}=\frac{{A}_{\mathrm{0}} }{{x}}+\frac{{A}_{\mathrm{1}} }{{x}+\mathrm{1}}+\frac{{A}_{\mathrm{2}} }{{x}+\mathrm{2}}+…+\frac{{A}_{{n}} }{{x}+{n}} \\ $$$${A}_{\mathrm{0}}…

advanced-calculus-n-1-sin-n-n-3-

Question Number 139479 by mnjuly1970 last updated on 27/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:….\bigstar\bigstar\bigstar…..{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\: :=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{{sin}\left({n}\right)}{{n}}\right)^{\mathrm{3}} =?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$ Answered by Dwaipayan Shikari last…

Question-73940

Question Number 73940 by smartsmith459@gmail.com last updated on 16/Nov/19 Answered by Rio Michael last updated on 16/Nov/19 $$\left.{Q}\mathrm{4}\right)\:{is}\:{equivalent}\:{to}\:{solving}\: \\ $$$$\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:=\:{M}^{−\mathrm{1}} \begin{pmatrix}{\mathrm{1}}\\{\mathrm{23}}\end{pmatrix} \\ $$$${where}\:{M}\:=\:\begin{pmatrix}{\mathrm{3}}&{−\mathrm{4}}\\{\mathrm{7}}&{\mathrm{1}}\end{pmatrix} \\ $$$${M}^{−\mathrm{1}}…

nice-calculus-0-1-ln-1-x-2-x-2-1-dx-pi-2-24-NOTE-li-2-z-li-2-1-z-pi-2-6-ln-z-ln-1-z-Hence-

Question Number 139478 by mnjuly1970 last updated on 27/Apr/21 $$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:………\:{nice}\:…\:…\:…\:{calculus}…….. \\ $$$$\:\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{24}} \\ $$$$\:\:\:\:\:\:\:{NOTE}\:::\:{li}_{\mathrm{2}} \left({z}\right)+{li}_{\mathrm{2}} \left(\mathrm{1}−{z}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−{ln}\left({z}\right){ln}\left(\mathrm{1}−{z}\right) \\ $$$$\:\:\:\:\:\:\:\:\:{Hence}\:::\:\:{li}_{\mathrm{2}}…

Q-1-cos-4A-1-8cos-2-A-8cos-2-A-Q-2-sec8-A-1-sec4-A-1-tan-8A-tan-2A-Q-3-tanA-tan-60-0-A-tan-120-0-4-3tan-3A-Q-4-sinA-sin-60-0-A-sin-60-0-A-1-4-sin3A-

Question Number 8403 by rhm last updated on 10/Oct/16 $$\left({Q}.\mathrm{1}\right)\:{cos}\:\mathrm{4}{A}=\mathrm{1}−\mathrm{8}{cos}^{\mathrm{2}} {A}\:+\:\mathrm{8}{cos}^{\mathrm{2}} \:{A} \\ $$$$\left({Q}.\mathrm{2}\right)\:\:\frac{{sec}\mathrm{8}\:{A}\:−\mathrm{1}}{{sec}\mathrm{4}\:{A}\:−\mathrm{1}}\:=\:\frac{{tan}\:\mathrm{8}{A}}{{tan}\:\mathrm{2}{A}} \\ $$$$\left({Q}.\mathrm{3}\right)\:\:\:{tanA}+{tan}\left(\mathrm{60}^{\mathrm{0}} +{A}\right)+{tan}\left(\mathrm{120}^{\mathrm{0}} \right. \\ $$$$\left.+\mathrm{4}\right)\:=\:\mathrm{3}{tan}\:\mathrm{3}{A}\: \\ $$$$\left({Q}.\mathrm{4}\right)\:\:\:{sinA}\:{sin}\:\left(\mathrm{60}^{\mathrm{0}} −{A}\right)\:\:{sin}\left(\mathrm{60}^{\mathrm{0}} +{A}\right)\: \\…