Question Number 73919 by necxxx last updated on 16/Nov/19 Commented by necxxx last updated on 16/Nov/19 $${Good}\:{day}\:{sirs}.\:{This}\:{question}\:{was}\:{formed} \\ $$$${and}\:{solved}\:{by}\:{some}\:{of}\:{us}\:{here}.\:{I}\:{really}\: \\ $$$${do}\:{not}\:{remember}\:{the}\:{question}\:{or} \\ $$$${approaches}\:{applied}.\:{Please}\:{help}. \\ $$$${Thanks}\:{in}\:{advance}.…
Question Number 139455 by mnjuly1970 last updated on 27/Apr/21 $$\:\:\:\:\:\:\:#\:{calculus}# \\ $$$$\:\:{evaluate}: \\ $$$$\:\:\boldsymbol{\phi}:=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \:\Gamma\:\left(\frac{{k}}{\mathrm{2}}\right)}{{k}\:\Gamma\left(\frac{{k}+\mathrm{1}}{\mathrm{2}}\right)}\:=? \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 139454 by aliibrahim1 last updated on 27/Apr/21 Answered by Dwaipayan Shikari last updated on 27/Apr/21 $$\int{x}^{\mathrm{2}} \frac{{tan}^{−\mathrm{1}} {x}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$=\int{tan}^{−\mathrm{1}} \left({x}\right)−\int\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{{x}^{\mathrm{2}}…
Question Number 73913 by arkanmath7@gmail.com last updated on 16/Nov/19 $${I}\:{need}\:{the}\:{sol}.\:{plz} \\ $$$${find}\:{the}\:{imaginary}\:{and}\:{real}\:{parts}\:{of} \\ $$$${log}\:{sin}\left({a}+{ib}\right)? \\ $$ Answered by Tanmay chaudhury last updated on 16/Nov/19 $${Log}\left({sinacosib}+{cosasinib}\right)…
Question Number 139445 by aliibrahim1 last updated on 27/Apr/21 Answered by mr W last updated on 27/Apr/21 $${u}={xy} \\ $$$$\frac{{du}}{{dx}}={x}\frac{{dy}}{{dx}}+{y} \\ $$$$\frac{{du}}{{dx}}+\mathrm{3}{u}^{\mathrm{2}} =\mathrm{0} \\ $$$$−\frac{{du}}{{u}^{\mathrm{2}}…
Question Number 73910 by Rio Michael last updated on 16/Nov/19 Commented by Rio Michael last updated on 16/Nov/19 $${given}\:{figure}\:\mathrm{1}. \\ $$$${in}\:{which}\:{direction}\:{will}\:{the}\:{reaction}\:{of}\:{at}\:{the} \\ $$$${hinge}\:{be}\:{inclined}. \\ $$$${is}\:{it}\:{to}\:{the}\:{vertical}\:{or}\:{horizontal}?…
Question Number 8375 by tawakalitu last updated on 09/Oct/16 $$\mathrm{Evaluate}\::\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \sqrt{\mathrm{1}\:−\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\mathrm{By}\:\mathrm{direct}\:\mathrm{integration}\:\mathrm{and}\:\mathrm{by}\:\mathrm{expanding} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{power}\:\mathrm{series}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 8373 by arinto27 last updated on 09/Oct/16 Commented by ridwan balatif last updated on 09/Oct/16 $$\mathrm{1}.\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}^{\mathrm{x}−\mathrm{1}} \Leftrightarrow\mathrm{y}=\mathrm{3}^{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\mathrm{logy}=\mathrm{log3}^{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\mathrm{logy}=\left(\mathrm{x}−\mathrm{1}\right)\mathrm{log3} \\ $$$$\:\:\:\:\:^{\mathrm{3}}…
Question Number 73909 by Pk1167156@gmail.com last updated on 16/Nov/19 Commented by Pk1167156@gmail.com last updated on 16/Nov/19 $${slution}\:{plz}… \\ $$ Answered by arkanmath7@gmail.com last updated on…
Question Number 8368 by Nayon last updated on 09/Oct/16 $$ \\ $$$${prove} \\ $$$$\pi=\frac{\mathrm{6}}{\:\sqrt{\mathrm{3}}}×\underset{{x}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{x}+\mathrm{1}} }{\left(\mathrm{2}{x}−\mathrm{1}\right)×\mathrm{3}^{{x}−\mathrm{1}} } \\ $$$$ \\ $$ Answered by Nayon…