Question Number 73818 by rajesh4661kumar@gmail.com last updated on 16/Nov/19 Commented by Tinku Tara last updated on 16/Nov/19 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{post}\:\mathrm{a}\:\mathrm{clear}\:\mathrm{image}. \\ $$ Answered by Tanmay chaudhury last…
Question Number 139352 by 676597498 last updated on 26/Apr/21 Commented by 676597498 last updated on 26/Apr/21 $${pls}\:{Mr}.\:{W}..{help}\:{you}\:{bro} \\ $$$$ \\ $$$$ \\ $$ Terms of…
Question Number 8282 by tawakalitu last updated on 06/Oct/16 $$\mathrm{Find}\:\mathrm{x},\:\mathrm{y}\:\mathrm{in}\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{1}}\\{\mathrm{x}^{\mathrm{8}} \:+\:\mathrm{y}^{\mathrm{8}} \:=\:\mathrm{x}^{\mathrm{10}} \:+\:\mathrm{y}^{\mathrm{10}} }\end{cases} \\ $$ Commented by Rasheed Soomro last…
Question Number 139355 by Dwaipayan Shikari last updated on 26/Apr/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{F}\left({an}\right)}{\left({an}\right)!}\:\:\:\:\:\:\:\:{F}\left({n}\right):={Fibbonacci}\:{Number} \\ $$ Commented by Dwaipayan Shikari last updated on 26/Apr/21 $${a}\:{is}\:{any}\:{kind}\:{of}\:{Number}\: \\…
Question Number 73816 by TawaTawa last updated on 16/Nov/19 Commented by mr W last updated on 16/Nov/19 $$\frac{{a}+{b}}{\mathrm{2}}−{b}={b} \\ $$$$\Rightarrow{a}=\mathrm{3}{b} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\mathrm{3} \\ $$ Commented…
Question Number 8281 by tawakalitu last updated on 06/Oct/16 $$\int\frac{\mathrm{6}\:\mathrm{sinx}\:\mathrm{cosx}}{\mathrm{sinx}\:+\:\mathrm{cosx}}\:\mathrm{dx} \\ $$ Answered by Yozzias last updated on 06/Oct/16 $$\frac{\mathrm{sinx}}{\mathrm{sinx}+\mathrm{cosx}}=\mathrm{1}−\frac{\mathrm{cosx}}{\mathrm{sinx}+\mathrm{cosx}} \\ $$$$\therefore\:\mathrm{I}=\int\frac{\mathrm{sinxcosx}}{\mathrm{sinx}+\mathrm{cosx}}\mathrm{dx}=\int\left(\mathrm{1}−\frac{\mathrm{cosx}}{\mathrm{sinx}+\mathrm{cosx}}\right)\mathrm{cosxdx} \\ $$$$=\int\left(\mathrm{cosx}−\frac{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}{\mathrm{sinx}+\mathrm{cosx}}\right)\mathrm{dx}…
Question Number 73817 by Rio Michael last updated on 16/Nov/19 $${find}\:{the}\:{solutions}\:{of}\:{the}\:{equation} \\ $$$${in}\:\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\pi \\ $$$$\:\:{sin}\mathrm{2}\theta\:=\:{sec}\theta \\ $$ Answered by mr W last updated on 16/Nov/19…
Question Number 139348 by BHOOPENDRA last updated on 26/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 8277 by Yozzias last updated on 05/Oct/16 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{one}\:\mathrm{representation}\:\mathrm{for}\:\pi\approx\mathrm{3}.\mathrm{14}… \\ $$$$\mathrm{is}\:\pi=\mathrm{12cos}^{−\mathrm{1}} \left[\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{1}/\mathrm{4}} \left(\mathrm{1}+\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{2r}} {\prod}}\left(\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{k}\right)}{\left(\mathrm{2r}\right)!}\left(\frac{−\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{r}} \right)\right]. \\ $$$$ \\ $$ Terms of…
Question Number 8275 by lepan last updated on 05/Oct/16 $${Show}\:{that}\:{the}\:{followings} \\ $$$$\left({i}\right){sin}\left({a}+{b}\right)={sina}\:{cosb}\:+{cosa}\:{sinb} \\ $$$$\left({ii}\right){cos}\left({a}−{b}\right)={cosa}\:{cosb}\:+{sina}\:{sinb} \\ $$$$ \\ $$ Commented by sou1618 last updated on 05/Oct/16…