Menu Close

Author: Tinku Tara

Solve-for-real-numbers-a-1-b-2-c-3-2024-12-a-1-b-2-c-3-2024-12-a-1-b-2-c-3-2024-24-

Question Number 138827 by mathdanisur last updated on 18/Apr/21 $${Solve}\:{for}\:{real}\:{numbers}: \\ $$$$\begin{cases}{−{a}^{\mathrm{1}} −{b}^{\mathrm{2}} −{c}^{\mathrm{3}} =\mathrm{2024}^{\mathrm{12}} }\\{−{a}^{−\mathrm{1}} −{b}^{−\mathrm{2}} −{c}^{−\mathrm{3}} =\mathrm{2024}^{−\mathrm{12}} }\\{{a}^{\mathrm{1}} {b}^{\mathrm{2}} {c}^{\mathrm{3}} =\mathrm{2024}^{\mathrm{24}} }\end{cases} \\…

Let-n-2-31-3-19-how-many-positive-integer-divisors-of-n-2-are-less-than-n-but-do-not-divide-n-

Question Number 7750 by Tawakalitu. last updated on 13/Sep/16 $${Let}\:{n}\:=\:\left(\mathrm{2}^{\mathrm{31}} \right)\:×\:\left(\mathrm{3}^{\mathrm{19}} \right)\:{how}\:{many}\:{positive}\:{integer} \\ $$$${divisors}\:{of}\:{n}^{\mathrm{2}} \:{are}\:{less}\:{than}\:{n}\:{but}\:{do}\:{not}\:{divide}\:{n} \\ $$ Commented by Yozzia last updated on 13/Sep/16 $${n}^{\mathrm{2}}…

Given-that-Z-and-H-are-complex-number-obtain-the-real-and-imaginary-of-Z-H-

Question Number 7748 by Tawakalitu. last updated on 13/Sep/16 $${Given}\:{that}\:{Z}\:{and}\:{H}\:{are}\:{complex}\:{number}.\: \\ $$$${obtain}\:{the}\:{real}\:{and}\:{imaginary}\:{of}\:{Z}^{{H}} \\ $$ Answered by Yozzia last updated on 13/Sep/16 $${Let}\:{Z}={re}^{{i}\theta} ,\:{H}={c}+{di}\:\:\left({r},\theta,{c},{d}\in\mathbb{R},\:{r}>\mathrm{0},\:{i}=\sqrt{−\mathrm{1}}\right). \\ $$$${Z}^{{H}}…

1-f-x-0-1-x-2t-dt-0-3-f-x-dx-2-f-x-x-2-1-x-dt-t-3-3t-2-3t-f-2019-1-

Question Number 138819 by qaz last updated on 18/Apr/21 $$\left(\mathrm{1}\right)::{f}\left({x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \mid{x}−\mathrm{2}{t}\mid{dt},\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{3}} {f}\left({x}\right){dx}=? \\ $$$$−−−−−−−−−−−−−−−−−−− \\ $$$$\left(\mathrm{2}\right)::{f}\left({x}\right)={x}^{\mathrm{2}} \centerdot\int_{\mathrm{1}} ^{{x}} \frac{{dt}}{{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}},\:\:\:\:\:\:\:\:\:\:\:\:\:{f}^{\left(\mathrm{2019}\right)} \left(\mathrm{1}\right)=? \\…