Menu Close

Author: Tinku Tara

6-7-10-11-6-10-24-7-4-10-22-3-84-10-8-2-how-to-dived-this-number-plzzz-ans-

Question Number 7732 by Rohit 57 last updated on 13/Sep/16 $$\frac{\mathrm{6}.\mathrm{7}×\mathrm{10}^{−\mathrm{11}} ×\:\mathrm{6}×\mathrm{10}^{\mathrm{24}} ×\:\mathrm{7}.\mathrm{4}×\mathrm{10}^{\mathrm{22}} }{\left(\mathrm{3}.\mathrm{84}×\mathrm{10}^{\mathrm{8}} \right)^{\mathrm{2}} } \\ $$$${how}\:{to}\:{dived}\:{this}\:{number}….\:{plzzz}\:{ans} \\ $$$$\: \\ $$ Answered by sandy_suhendra…

Let-a-b-c-be-positive-constants-Among-all-real-number-x-and-y-satisfying-ax-by-c-find-the-maximum-value-of-product-xy-

Question Number 138797 by bramlexs22 last updated on 18/Apr/21 $${Let}\:{a},{b},{c}\:{be}\:{positive}\:{constants}. \\ $$$${Among}\:{all}\:{real}\:{number}\:{x}\:{and}\:{y}\: \\ $$$${satisfying}\:{ax}+{by}={c}\:,\:{find}\:{the} \\ $$$${maximum}\:{value}\:{of}\:{product} \\ $$$${xy}. \\ $$ Answered by TheSupreme last updated…

Question-73260

Question Number 73260 by Lontum Hans last updated on 09/Nov/19 Answered by mr W last updated on 09/Nov/19 $${T}_{{max}} ={m}\left(\frac{{v}^{\mathrm{2}} }{{r}}+{g}\right)=\mathrm{8}\left(\frac{\mathrm{6}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{10}\right)=\mathrm{224}\:{N} \\ $$$${T}_{{min}} ={m}\left(\frac{{v}^{\mathrm{2}}…

Question-73258

Question Number 73258 by Lontum Hans last updated on 09/Nov/19 Answered by MJS last updated on 09/Nov/19 $$\mathrm{well},\:\mathrm{just}\:\mathrm{do}\:\mathrm{it} \\ $$$${u}=\mathrm{1}+\mathrm{cosh}\:{x}\:\rightarrow\:{dx}=\frac{{du}}{\mathrm{sinh}\:{x}} \\ $$$$…=\underset{\mathrm{2}} {\overset{\mathrm{3}} {\int}}\frac{{du}}{{u}\left({u}−\mathrm{1}\right)}=\left[\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}}\right]_{\mathrm{2}} ^{\mathrm{3}}…

p-n-nth-prime-p-1-2-p-2-3-p-3-5-Do-the-following-sums-converge-Prove-disprove-1-S-n-1-n-p-n-2-S-n-1-n-p-n-2-

Question Number 7723 by FilupSmith last updated on 12/Sep/16 $${p}_{{n}} ={n}\mathrm{th}\:\mathrm{prime}\:\:\left({p}_{\mathrm{1}} =\mathrm{2},\:\:{p}_{\mathrm{2}} =\mathrm{3},\:\:\:{p}_{\mathrm{3}} =\mathrm{5},\:…\right) \\ $$$$\mathrm{Do}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sums}\:\mathrm{converge}?\:\mathrm{Prove}/\mathrm{disprove}. \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{p}_{{n}} } \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{{p}_{{n}}…