Question Number 73238 by mathmax by abdo last updated on 08/Nov/19 $${let}\:\mathrm{0}<{a}<\mathrm{1}\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}^{\mathrm{2}} \left({t}\right){t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt} \\ $$ Commented by mathmax by…
Question Number 7702 by Rasheed Soomro last updated on 10/Sep/16 Commented by Rasheed Soomro last updated on 11/Sep/16 $${Given} \\ $$$${AB}={BD}={DF} \\ $$$$\angle{FGH}=\alpha \\ $$$${GF}={r}…
Question Number 7701 by z last updated on 10/Sep/16 $$\left({x}−\mathrm{2}{y}\right. \\ $$$$ \\ $$ Commented by Rohit 57 last updated on 11/Sep/16 $${what}\:{mean}\:{this}\:{qvestion}\:{plzzz}\: \\ $$…
Question Number 138774 by Bekzod Jumayev last updated on 18/Apr/21 Commented by Bekzod Jumayev last updated on 18/Apr/21 $$\:\:\:\:\:\:\boldsymbol{{x}}=?? \\ $$$$\boldsymbol{{Please}}\:\boldsymbol{{help}} \\ $$ Answered by…
Question Number 73235 by TawaTawa last updated on 08/Nov/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138771 by qaz last updated on 18/Apr/21 $$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {ln}\:\left(\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{tan}\:^{\mathrm{4}} {x}\right){dx}=? \\ $$ Answered by Kamel last updated on 19/Apr/21 Answered by…
Question Number 7697 by Rohit 57 last updated on 09/Sep/16 $${Q}.\mathrm{1}\:{which}\:{term}\:{of}\:{A}.{P}:\:\mathrm{3},\:\mathrm{15},\:\mathrm{27},\:\mathrm{39}… \\ $$$$…{will}\:{be}\:\mathrm{132}\:{more}\:{than}\:{its}\:\mathrm{54}{th}\:{term}. \\ $$ Commented by prakash jain last updated on 09/Sep/16 $$\mathrm{The}\:\mathrm{given}\:\mathrm{series} \\…
Question Number 138765 by 676597498 last updated on 18/Apr/21 Commented by 676597498 last updated on 18/Apr/21 $${please}\:{help} \\ $$ Answered by physicstutes last updated on…
Question Number 73230 by mathmax by abdo last updated on 08/Nov/19 $${calculate}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{x}^{{n}} }{\mathrm{2}+{x}^{\mathrm{2}{n}} }{dx}\:\:{and}\:{J}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}+{x}^{\mathrm{3}{n}} }{\mathrm{5}+{x}^{\mathrm{7}{n}} }{dx} \\ $$$${with}\:{n}\:{integr}\:{natural}\:{not}\:\mathrm{0} \\…
Question Number 138764 by otchereabdullai@gmail.com last updated on 17/Apr/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{impedence}\:\mathrm{of}\:\mathrm{an}\:\mathrm{RC}\:\mathrm{circuit} \\ $$$$\mathrm{with}\:\mathrm{R}=\:\mathrm{10}\Omega\:\mathrm{and}\:\mathrm{C}=\mathrm{10}\mu\mathrm{F}\:\mathrm{at}\:\mathrm{an}\: \\ $$$$\mathrm{angular}\:\mathrm{frequency}\:\mathrm{of}\:\mathrm{21800rads}^{−\mathrm{1}} \\ $$ Answered by ajfour last updated on 18/Apr/21 $${Z}=\sqrt{{R}^{\mathrm{2}} +\frac{\mathrm{1}}{\left(\omega{C}\right)^{\mathrm{2}}…