Menu Close

Author: Tinku Tara

Question-138702

Question Number 138702 by peter frank last updated on 16/Apr/21 Answered by mr W last updated on 17/Apr/21 $${y}=\mathrm{sinh}\:{x}+{k}\:\mathrm{cosh}\:{x} \\ $$$$\:\:=\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\:\left(\frac{\mathrm{1}}{\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\mathrm{sinh}\:{x}+\frac{{k}}{\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{cosh}\:{x}\right) \\…

By-the-use-of-substitution-x-2-show-that-the-legendary-equation-1-2-y-2-y-n-n-1-y-0-where-n-is-a-constant-change-to-hyper-geometric-equation-hence-obtain-the-solution-to-

Question Number 7628 by Tawakalitu. last updated on 06/Sep/16 $${By}\:{the}\:{use}\:{of}\:{substitution}\:\:{x}\:=\:\mu^{\mathrm{2}} ,\:{show}\:{that} \\ $$$${the}\:{legendary}\:{equation}\:, \\ $$$$\left(\mathrm{1}\:−\:\mu^{\mathrm{2}} \right){y}''\:−\:\mathrm{2}\mu{y}'\:+\:{n}\left({n}\:+\:\mathrm{1}\right){y}\:=\:\mathrm{0},\: \\ $$$${where}\:{n}\:{is}\:{a}\:{constant}\:{change}\:{to}\:{hyper}\:{geometric} \\ $$$${equation}\:.\:{hence}\:{obtain}\:{the}\:{solution}\:{to}\:{the}\: \\ $$$${resulting}\:{hyper}\:{geometric}\:{differential}\:{equation}\: \\ $$$${by}\:{way}\:{of}\:{comparison}. \\…

Question-138696

Question Number 138696 by mr W last updated on 16/Apr/21 Commented by mr W last updated on 16/Apr/21 $${a}\:{small}\:{mass}\:{is}\:{released}\:{on}\:{the} \\ $$$${interior}\:{surface}\:{of}\:{a}\:{hollow}\:{cone} \\ $$$${at}\:{the}\:{position}\:{as}\:{shown}.\:{find}\:{the} \\ $$$${time}\:{the}\:{mass}\:{needs}\:{to}\:{reach}\:{the}\:{tip}…

1-tanAtan-A-2-tanAcot-A-2-1-secA-

Question Number 73160 by Aditya789 last updated on 07/Nov/19 $$\mathrm{1}+{tanAtan}\frac{{A}}{\mathrm{2}}={tanAcot}\frac{{A}}{\mathrm{2}}−\mathrm{1}={secA} \\ $$ Answered by $@ty@m123 last updated on 07/Nov/19 $$\mathrm{1}+\mathrm{tan}\:{A}\mathrm{tan}\:\frac{{A}}{\mathrm{2}} \\ $$$$=\mathrm{1}+\frac{\mathrm{2tan}\:\frac{{A}}{\mathrm{2}}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{{A}}{\mathrm{2}}}\:.\mathrm{tan}\:\frac{{A}}{\mathrm{2}} \\ $$$$=\mathrm{1}+\frac{\mathrm{2tan}^{\mathrm{2}}…

Question-138698

Question Number 138698 by mathlove last updated on 16/Apr/21 Answered by nimnim last updated on 16/Apr/21 $$\frac{{a}}{{b}}=\mathrm{1}.\mathrm{454545}…..=\frac{\mathrm{145}−\mathrm{1}}{\mathrm{99}}=\frac{\mathrm{144}}{\mathrm{99}}=\frac{\mathrm{16}}{\mathrm{11}} \\ $$$$\Rightarrow{a}=\mathrm{16},\:{b}=\mathrm{11} \\ $$$$\therefore\:{a}+{b}=\mathrm{16}+\mathrm{11}=\mathrm{27} \\ $$ Commented by…