Menu Close

Author: Tinku Tara

prove-or-disprove-k-1-n-f-k-f-1-k-2-n-i-1-k-1-1-i-1-f-i-1-C-i-1-k-2-k-1-i-1-k-1-n-i-

Question Number 138600 by Raxreedoroid last updated on 15/Apr/21 $$\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{f}\left({k}\right)={f}\left(\mathrm{1}\right)+\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\frac{\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} {f}\left({i}+\mathrm{1}\right){C}_{{i}−\mathrm{1}} ^{{k}−\mathrm{2}} }{\left({k}−\mathrm{1}\right)!}\:\underset{{i}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\prod}}\left({n}−{i}\right)\right) \\ $$…

1-2pii-lim-T-iT-iT-e-st-s-a-ds-

Question Number 138603 by Ar Brandon last updated on 15/Apr/21 $$\frac{\mathrm{1}}{\mathrm{2}\pi\mathrm{i}}\underset{\mathrm{T}\rightarrow\infty} {\mathrm{lim}}\underset{\gamma−\mathrm{iT}} {\overset{\gamma+\mathrm{iT}} {\int}}\frac{\mathrm{e}^{\mathrm{st}} }{\mathrm{s}−\mathrm{a}}\mathrm{ds} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

let-P-n-x-x-1-n-x-1-n-1-fartorize-inside-C-x-P-n-x-2-calculate-k-1-p-cotan-kpi-2p-1-

Question Number 73059 by mathmax by abdo last updated on 05/Nov/19 $${let}\:{P}_{{n}} \left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} −\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{fartorize}\:{inside}\:{C}\left({x}\right)\:{P}_{{n}} \left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$ Commented by…

Question-138594

Question Number 138594 by Ar Brandon last updated on 15/Apr/21 Commented by Ar Brandon last updated on 15/Apr/21 $$\mathrm{In}\:\mathrm{honour}\:\mathrm{of}\:\mathrm{Leonhard}\:\mathrm{Euler} \\ $$$$\mathrm{on}\:\mathrm{his}\:\mathrm{314}^{\mathrm{th}} \:\mathrm{anniversary}. \\ $$ Commented…

A-2-3-rectangle-and-a-3-4-rectangle-are-contain-within-a-square-without-over-laping-at-any-inferior-point-and-the-sides-of-the-square-are-parallel-to-the-sides-of-the-two-given-rectangles-

Question Number 7519 by Tawakalitu. last updated on 01/Sep/16 $${A}\:\left(\mathrm{2}\:×\:\mathrm{3}\right)\:{rectangle}\:{and}\:{a}\:\left(\mathrm{3}\:×\:\mathrm{4}\right)\:{rectangle}\:{are}\:{contain}\:{within}\: \\ $$$${a}\:{square}\:{without}\:{over}\:{laping}\:{at}\:{any}\:{inferior}\:{point}\:,\:{and}\:{the}\: \\ $$$${sides}\:{of}\:{the}\:{square}\:{are}\:{parallel}\:{to}\:{the}\:{sides}\:{of}\:{the}\:{two}\:{given} \\ $$$${rectangles}.\:{what}\:{is}\:{the}\:{smallest}\:{possible}\:{area}\:{of}\:{the}\:{square}. \\ $$ Commented by Rasheed Soomro last updated on…

let-P-n-X-n-X-n-1-X-2-X-1-R-X-1-prove-that-P-n-have-one-root-x-n-inside-0-2-study-the-sequence-x-n-

Question Number 73052 by mathmax by abdo last updated on 05/Nov/19 $${let}\:{P}_{{n}} ={X}^{{n}} \:+{X}^{{n}−\mathrm{1}} \:+….+{X}^{\mathrm{2}} \:+{X}−\mathrm{1}\:\in{R}\left[{X}\right] \\ $$$$\left.\mathrm{1}\left.\right){prove}\:{that}\:{P}_{{n}} {have}\:{one}\:{root}\:{x}_{{n}} \:{inside}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){study}\:{the}\:{sequence}\:{x}_{{n}} \\ $$ Answered…