Menu Close

Author: Tinku Tara

Given-r-t-j-gt-0-and-n-1-Prove-that-p-1-1-n-p-1-r-r-p-2-1-n-p-2-t-t-2-n-2-n-r-t-n-r-n-t-n-t-n-r-n-rt-p-2-1-n-p-2-t-t-p-3-1-n-p

Question Number 7507 by Master Moon last updated on 01/Sep/16 $$\boldsymbol{{Given}}\:\boldsymbol{{r}},\:\boldsymbol{{t}},\:\boldsymbol{{j}}\:>\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{n}}\geqslant\mathrm{1};\:\boldsymbol{{Prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\left[\underset{\boldsymbol{{p}}_{\mathrm{1}} =\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\boldsymbol{{p}}_{\mathrm{1}} ^{\boldsymbol{{r}}} +\boldsymbol{{r}}\right)+\underset{\boldsymbol{{p}}_{\mathrm{2}} =\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\left(\boldsymbol{{p}}_{\mathrm{2}} ^{\boldsymbol{{t}}} +\boldsymbol{{t}}\right)\right]^{\mathrm{2}} }{\boldsymbol{{n}}^{\mathrm{2}} \left[\left(\boldsymbol{{n}}!\right)^{\frac{\boldsymbol{{r}}+\boldsymbol{{t}}}{\boldsymbol{{n}}}}…

lim-x-0-1-cot-2x-2tan-2x-

Question Number 138576 by liberty last updated on 15/Apr/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{cot}\:\mathrm{2}{x}\right)^{\mathrm{2tan}\:\mathrm{2}{x}} \:=?\: \\ $$ Answered by phanphuoc last updated on 15/Apr/21 $${li}\underset{{u}\left({x}\right)−>\mathrm{0}} {{m}}\left(\mathrm{1}+{u}\left({x}\right)\right)^{\mathrm{1}/{u}\left({x}\right)} ={e} \\…

1-x-1-x-1-2-dx-x-

Question Number 7506 by gourav~ last updated on 01/Sep/16 $$\int\left\{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}\right\}^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{{dx}}{{x}}=? \\ $$$$ \\ $$$$ \\ $$ Answered by Yozzia last updated on 01/Sep/16 $${Let}\:{I}=\int\frac{\mathrm{1}}{{x}}\sqrt{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}}{dx}.…

prove-that-n-p-N-N-1-k-0-p-1-k-C-n-k-1-p-C-n-1-p-2-p-q-N-2-k-0-p-C-p-q-k-C-p-q-k-p-k-2-p-C-p-q-p-

Question Number 73040 by mathmax by abdo last updated on 05/Nov/19 $${prove}\:{that}\:\:\forall\left({n},{p}\right)\in{N}^{\bigstar} ×{N} \\ $$$$\left.\mathrm{1}\right)\sum_{{k}=\mathrm{0}} ^{{p}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$$$\left.\mathrm{2}\right)\forall\left({p},{q}\right)\in{N}^{\mathrm{2}} \:\:\:\:\sum_{{k}=\mathrm{0}}…

let-U-n-n-2-if-n-even-and-U-n-n-1-2-if-n-odd-let-f-n-k-0-n-U-k-prove-that-x-y-N-2-f-x-y-f-x-y-xy-

Question Number 73039 by mathmax by abdo last updated on 05/Nov/19 $${let}\:{U}_{{n}} =\frac{{n}}{\mathrm{2}}\:{if}\:{n}\:{even}\:{and}\:{U}_{{n}} =\frac{{n}−\mathrm{1}}{\mathrm{2}}\:{if}\:{n}\:{odd}\:{let}\:{f}\left({n}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {U}_{{k}} \\ $$$${prove}\:{that}\:\forall\left({x},{y}\right)\in{N}^{\mathrm{2}} \:\:\:\:{f}\left({x}+{y}\right)−{f}\left({x}−{y}\right)={xy} \\ $$ Answered by mind is…

find-x-x-2-2-x-1-Any-help-

Question Number 138575 by KwesiDerek last updated on 15/Apr/21 $$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$$$\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{2}^{\boldsymbol{\mathrm{x}}} =\mathrm{1} \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}} \\ $$ Commented by soudo last updated on 15/Apr/21…