Question Number 138539 by mohammad17 last updated on 14/Apr/21 $${find}\:{the}\:{intigral}\:{of}\:{complex}\:{number} \\ $$$$ \\ $$$${I}_{{j}} =\int_{\gamma{j}} {xdz}\:\:\:{if}\:{j}=\mathrm{1},\mathrm{2}\:{and}\:{Y}_{\mathrm{1}} {he}\:{is}\:{a}\:{circle} \\ $$$$ \\ $$$$\mid{z}\mid={R} \\ $$ Terms of…
Question Number 7465 by Yozzia last updated on 30/Aug/16 $$\int\frac{{t}^{\mathrm{3}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)^{\mathrm{2}} }{dt}=? \\ $$ Commented by prakash jain last updated on 30/Aug/16 $$=\int\frac{{t}^{\mathrm{3}}…
Question Number 138533 by Ñï= last updated on 14/Apr/21 $$\int_{\mathrm{0}} ^{\mathrm{5}} \left(\mathrm{1}+{x}\right)\delta\left({x}^{\mathrm{2}} −\mathrm{4}\right){dx}=? \\ $$ Commented by Lordose last updated on 14/Apr/21 $$\delta\:\Rightarrow\:\mathrm{Meaning}? \\ $$…
Question Number 72998 by yannickmendes_33 last updated on 05/Nov/19 $${The}\:{acute}\:{angle}\:{of}\:{the}\:{rectangle}\:{trapezius}\:{is}\:{equal}\:{to}\:\alpha=\mathrm{90}°{arcsin}\mathrm{0}.\mathrm{1} \\ $$$${The}\:{bases}\:{measure}\:\mathrm{10}\:{and}\:\mathrm{30}.\:{Calculate}\:{the}\:{area}\:{of}\:{the}\:{trapezius}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138532 by mathlove last updated on 14/Apr/21 $${x}+\sqrt{{y}}=\mathrm{7} \\ $$$$\sqrt{{x}}+{y}=\mathrm{11} \\ $$$${faind}\:\:{x}=?\:\:{and}\:\:{y}=? \\ $$ Answered by henderson last updated on 14/Apr/21 $$\begin{cases}{{x}\:+\:\sqrt{{y}\:}\:=\:\mathrm{7}}\\{\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11}}\end{cases}\:\Leftrightarrow\:\begin{cases}{{x}\:=\:\mathrm{7}\:−\:\sqrt{{y}}}\\{\sqrt{\mathrm{7}−\sqrt{{y}}}\:+\:{y}\:=\:\mathrm{11}}\end{cases}\:\Leftrightarrow\:\begin{cases}{{x}\:=\:\mathrm{7}−\sqrt{{y}}}\\{\sqrt{\mathrm{7}−\sqrt{{y}}}\:=\:\mathrm{11}−{y}}\end{cases}\Leftrightarrow \\…
Question Number 72997 by yannickmendes_33 last updated on 05/Nov/19 $${The}\:{area}\:{of}\:{the}\:{equilateral}\:{triangle}\:{is}\:{equal}\:{to}\:\frac{\sqrt{\mathrm{16}}\sqrt{\mathrm{8}}}{\mathrm{3}\sqrt{\pi}} \\ $$$${Calculate}\:{the}\:{area}\:{of}\:{the}\:{circle}\:{inscribed}\:{in}\:{the}\:{triangle}. \\ $$$$\: \\ $$ Answered by Kunal12588 last updated on 05/Nov/19 $${area}\:{of}\:{equilateral}\:\bigtriangleup\:=\:\frac{\sqrt{\mathrm{3}}\:{a}^{\mathrm{2}} }{\mathrm{4}}=\frac{\sqrt{\mathrm{16}}\sqrt{\mathrm{8}}}{\mathrm{3}\sqrt{\pi}}=\frac{\mathrm{8}\sqrt{\mathrm{2}}}{\mathrm{3}\sqrt{\pi}}…
Question Number 72990 by mathmax by abdo last updated on 05/Nov/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\:\frac{{arctan}\left({e}^{{x}} \right)−\frac{\pi}{\mathrm{4}}}{{x}^{\mathrm{2}} } \\ $$ Commented by abdomathmax last updated on 19/Nov/19 $${let}\:{use}\:{hospital}\:{theorem}\:\:{f}\left({x}\right)={arctan}\left({e}^{{x}}…
Question Number 138524 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…….{advanced}\:…\:….\:…\:{calculus}….. \\ $$$$\:\:\:\boldsymbol{\mathrm{I}}:=\int_{\frac{−\pi}{\mathrm{2}}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({tan}\left({x}\right)\right){dx}\overset{???} {=}\frac{\pi}{{e}}{sinh}\left(\mathrm{1}\right) \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 72988 by mathmax by abdo last updated on 05/Nov/19 $${calculate}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{e}^{−{xt}^{\mathrm{2}} } }{\mathrm{4}+{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}>\mathrm{0} \\ $$ Commented by mathmax by abdo last…
Question Number 7453 by ankit036 last updated on 30/Aug/16 Commented by Rasheed Soomro last updated on 30/Aug/16 $$\left(\mathrm{A}\right)\:\:\mathrm{1} \\ $$ Answered by afy1991 last updated…