Question Number 138383 by henderson last updated on 12/Apr/21 $$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{for}}\:{a}_{\mathrm{0}} \:=\:\mathrm{1}\:\boldsymbol{\mathrm{and}}\:\forall\:{n}\:\geqslant\:\mathrm{1},\:{a}_{{n}} \:=\:\frac{\mathrm{1}}{{n}}\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{n}−\mathrm{1}} {\sum}}\:\:\frac{{a}_{{k}} }{{n}−{k}}\:. \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\forall\:{n}\:\geqslant\:\mathrm{0},\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{get}}\:\mathrm{0}\:\leqslant\:{a}_{{n}} \:\leqslant\:\mathrm{1}. \\ $$ Commented by mitica…
Question Number 138377 by mnjuly1970 last updated on 13/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:……\:{advanced}\:…\:…\:…\:{calculus}…… \\ $$$$\:\:\:{evaluate}:::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\:.\left(\mathrm{2}+{x}\right)}\:{dx}=?? \\ $$$$\:\: \\ $$ Terms of…
Question Number 138376 by KwesiDerek last updated on 12/Apr/21 $$\boldsymbol{\mathrm{log}}_{\mathrm{4}} \left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)+\boldsymbol{\mathrm{log}}_{\mathrm{3}} \left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)=\mathrm{1} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138379 by physicstutes last updated on 12/Apr/21 Commented by physicstutes last updated on 12/Apr/21 $$\mathrm{the}\:\mathrm{figure}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{couple}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{moment}\:\mathrm{of}\:\mathrm{the}\:\mathrm{couple}. \\ $$ Commented by ajfour last…
I-t-s-0-x-t-1-x-s-dx-1-t-s-t-1-s-I-t-s-0-x-t-1-x-s-dx-0-x-t-1-x-m-s-1-x-m-dx-0-x-t-e-m-s-ln-1-x-1-x-
Question Number 138378 by Ñï= last updated on 12/Apr/21 $${I}\left({t},{s}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{−{t}} \left(\mathrm{1}+{x}\right)^{−{s}} {dx}=\frac{\Gamma\left(\mathrm{1}−{t}\right)\Gamma\left({s}+{t}−\mathrm{1}\right)}{\Gamma\left({s}\right)} \\ $$$${I}\left({t},{s}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{−{t}} \left(\mathrm{1}+{x}\right)^{−{s}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\infty} {x}^{−{t}} \left(\mathrm{1}+{x}\right)^{{m}−{s}}…
Question Number 72841 by indalecioneves last updated on 03/Nov/19 $${Could}\:{someone}\:{help}\:{me}\:{on}\:{this}\:{question}? \\ $$$${Knowing}\:{that}\:{the}\:{area}\:{of}\:{a}\:{circle}\:{segment}\:{is}\:{given}\:{by}\:{A}={R}^{\mathrm{2}} \left(\theta−{sin}\theta\right)/\mathrm{2}.\:{Where}\:{A}=\mathrm{7}{m}^{\mathrm{2}} ;\:{R}^{\mathrm{2}} =\frac{\mathrm{28}}{\pi}. \\ $$$${What}\:{is}\:{the}\:{best}\:{answer}\:{for}\:{the}\:{angle}\:{value}\:\left({degree}\right) \\ $$$$\left.{a}\right)\:\mathrm{85}°<\theta<\mathrm{90}° \\ $$$$\left.{b}\right)\:\mathrm{95}°<\theta<\mathrm{100}° \\ $$$$\left.{c}\right)\:\mathrm{105}°<\theta<\mathrm{110}° \\ $$$$\left.{d}\right)\:\mathrm{115}°<\theta<\mathrm{120}°…
Question Number 72838 by Rio Michael last updated on 03/Nov/19 $${given}\:{that}\:\:\:{f}\left({x}\right)\:=\:\frac{\mid{x}\:−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$${check}\:{if}\:{f}\:{is}\:{continuous}\:{a}\:{x}\:=\:\mathrm{2} \\ $$$${hence}\:\:{write}\:{f}\left({x}\right)\:{as}\:{a}\:{pairwise}\:{function}\: \\ $$ Commented by mathmax by abdo last updated on…
Question Number 138372 by 0731619177 last updated on 12/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72836 by aliesam last updated on 03/Nov/19 Commented by mathmax by abdo last updated on 04/Nov/19 $${changement}\:{x}=\frac{\pi}{\mathrm{3}}+{t}\:\:{give} \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{3}}} \:\:\frac{\sqrt{\mathrm{3}}{cosx}−{sinx}}{\mathrm{1}−\mathrm{2}{cosx}}\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\frac{\sqrt{\mathrm{3}}{cos}\left(\frac{\pi}{\mathrm{3}}+{t}\right)−{sin}\left(\frac{\pi}{\mathrm{3}}+{t}\right)}{\mathrm{1}−\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{3}}+{t}\right)} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}}…
Question Number 72837 by Rio Michael last updated on 03/Nov/19 $${find}\: \\ $$$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}\:+\:\left[{x}\right] \\ $$ Commented by mathmax by abdo last updated on 03/Nov/19…