Menu Close

Author: Tinku Tara

Question-7164

Question Number 7164 by aftab ahmad last updated on 14/Aug/16 Answered by Yozzia last updated on 14/Aug/16 $${By}\:{Power}\:{of}\:{a}\:{Point}\:{theorem}, \\ $$$$\left({AB}\right)\left({AC}\right)=\left({AD}\right)\left({AD}\right)=\left({AD}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{AC}=\frac{\left({AD}\right)^{\mathrm{2}} }{{AB}}=\frac{\mathrm{10}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{20}{cm} \\…

Question-7163

Question Number 7163 by Tawakalitu. last updated on 14/Aug/16 Commented by sou1618 last updated on 14/Aug/16 $$\underset{{a}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left(\underset{{b}=\mathrm{0}} {\overset{\mathrm{4}} {\sum}}{a}^{{b}} \right)=\underset{{a}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\left({a}^{\mathrm{0}} +{a}^{\mathrm{1}}…

for-p-q-R-satisfying-p-4-q-4-4pq-find-the-range-of-p-q-when-1-no-restriction-2-0-p-1-0-q-1-

Question Number 138235 by mr W last updated on 11/Apr/21 $${for}\:{p},{q}\in\mathbb{R}\:{satisfying}\:{p}^{\mathrm{4}} +{q}^{\mathrm{4}} =\mathrm{4}{pq} \\ $$$${find}\:{the}\:{range}\:{of}\:{p}+{q}\:{when} \\ $$$$\left.\mathrm{1}\right)\:{no}\:{restriction} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{0}\leqslant{p}\leqslant\mathrm{1},\:\mathrm{0}\leqslant{q}\leqslant\mathrm{1} \\ $$ Answered by mr W…

convergent-or-divergent-S-2-1-1-1-2-3-1-3-2-5-1-5-2-7-1-7-

Question Number 72694 by MJS last updated on 31/Oct/19 $$\mathrm{convergent}\:\mathrm{or}\:\mathrm{divergent}? \\ $$$${S}=\frac{\mathrm{2}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{7}}… \\ $$ Commented by mathmax by abdo last updated on 31/Oct/19 $${S}=\sum_{{n}=\mathrm{0}} ^{\infty}…

log-2-x-1-2015-y-1-2015-1-e-2-ixy-2015-

Question Number 7159 by Master Moon last updated on 14/Aug/16 $$\boldsymbol{{log}}_{\mathrm{2}} \underset{\boldsymbol{{x}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\:\underset{\boldsymbol{{y}}=\mathrm{1}} {\overset{\mathrm{2015}} {\prod}}\left(\mathrm{1}+\boldsymbol{{e}}^{\frac{\mathrm{2}\boldsymbol{\pi{ixy}}}{\mathrm{2015}}} \right)\:=\:? \\ $$ Commented by FilupSmith last updated on…

prove-that-the-arithmetic-mean-of-a-sequence-is-greater-or-equal-to-the-geometric-mean-that-is-a-b-2-ab-

Question Number 72693 by Rio Michael last updated on 31/Oct/19 $${prove}\:{that}\:{the}\:{arithmetic}\:{mean}\:{of}\:{a}\:{sequence} \\ $$$${is}\:{greater}\:{or}\:{equal}\:{to}\:{the}\:{geometric}\:{mean}. \\ $$$${that}\:\:{is}\:\: \\ $$$$\:\:\:\:\frac{{a}\:+\:{b}}{\mathrm{2}}\:\geqslant\:\sqrt{{ab}}\: \\ $$ Answered by MJS last updated on…