Menu Close

Author: Tinku Tara

Question-6334

Question Number 6334 by sanusihammed last updated on 24/Jun/16 Commented by nburiburu last updated on 24/Jun/16 $${basically}\:{you}\:\:{need}\:{to}\:{find}\:{first}\:{the}\:{common}\:{area}. \\ $$$${To}\:{do}\:{it},\:{let}\:{be}\:{M}\:{and}\:{N}\:{the}\:{intersection}\:{of}\:{both}\:{circles}\:{and}\:{O}\:{and}\:{P}\:\:{the}\:{centres}\:{of}\:{circle}\:{with}\:{radius}\:{b}\:{and}\:{a}\:,\:{respectively}. \\ $$$${the}\:{area}\:{couldbefound}\:{doing} \\ $$$${Area}.{circ}.{sector}\:\left({NOM}\right)\:+\:{Area}.{circ}.{sector}\:\left({MPO}\right)+{Area}.{circ}.{sector}\left({OPN}\right)\:−\:{Area}\bigtriangleup{MPO}\:−\:{Area}\bigtriangleup{OPN} \\ $$$${and}\:{for}\:{this}\:{is}\:{necessary}\:{to}\:{know}\:{two}\:\:{central}\:{angles}…

Find-the-sum-of-n-terms-of-the-following-series-1-1-x-1-1-x-1-1-x-

Question Number 6329 by Rasheed Soomro last updated on 24/Jun/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{x}}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{1}−\sqrt{\mathrm{x}}}+…. \\ $$ Commented by FilupSmith last updated on 24/Jun/16 $${s}\mathrm{equence}\:{x},\:\sqrt{{x}},\:{x}…\:\mathrm{can}\:\mathrm{be}\:\mathrm{given}\:\mathrm{by}: \\ $$$$\frac{{x}}{\mathrm{2}}\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}+\mathrm{1}}…

Sum-0-7-0-71-0-72-to-100-terms-

Question Number 6328 by Rasheed Soomro last updated on 24/Jun/16 $$\mathrm{Sum}\:\mathrm{0}.\mathrm{7}+\mathrm{0}.\mathrm{71}+\mathrm{0}.\mathrm{72}+….\mathrm{to}\:\mathrm{100}\:\mathrm{terms}. \\ $$ Commented by FilupSmith last updated on 24/Jun/16 $$\mathrm{difference}\:{d}\:=\:\mathrm{0}.\mathrm{01} \\ $$$$\mathrm{arithmetic}\:\mathrm{series}: \\ $$$$\therefore\:{S}=\frac{{n}}{\mathrm{2}}\left(\mathrm{2}{a}+\left({n}−\mathrm{1}\right){d}\right)…

Advanced-Calculus-simplify-n-k-1-2n-1-log-1-tan-kpi-4-2n-1-moreover-find-the-value-of-lim-n-n-n-

Question Number 137397 by mnjuly1970 last updated on 02/Apr/21 $$\:…….\mathscr{A}{dvanced}\:…\:\:…\:\:…\:\mathscr{C}{alculus}……. \\ $$$$\:{simplify}\:::: \\ $$$$\:\Omega_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}+\mathrm{1}} {\sum}}{log}\left(\mathrm{1}+{tan}\left(\frac{{k}\pi}{\mathrm{4}\left(\mathrm{2}{n}+\mathrm{1}\right)}\right)\right) \\ $$$$\:{moreover}\:,\:\:\:\:{find}\:{the}\:{value}\:{of}:: \\ $$$$\Omega=\:{lim}_{{n}\rightarrow\infty} \frac{\Omega_{{n}} }{{n}}\:=??? \\ $$…

Determine-and-N-by-using-vector-such-that-point-1-3-2-4-2-2-and-5-N-lies-on-a-straight-line-

Question Number 6321 by sanusihammed last updated on 23/Jun/16 $${Determine}\:\in\:{and}\:{N}\:{by}\:{using}\:{vector}\:{such}\:{that}\:{point}\:\left(−\mathrm{1},\mathrm{3},\mathrm{2}\right), \\ $$$$\left(−\mathrm{4},−\mathrm{2},−\mathrm{2}\right)\:{and}\:\left(\mathrm{5},\in,{N}\right)\:{lies}\:{on}\:{a}\:{straight}\:{line} \\ $$$$ \\ $$ Answered by nburiburu last updated on 23/Jun/16 $${let}'{s}\:{find}\:{the}\:{line}: \\…