Menu Close

Author: Tinku Tara

Solve-the-system-of-equation-x-y-z-9-equation-i-x-2-y-2-z-2-99-equation-ii-y-2-xz-equation-iii-

Question Number 6317 by sanusihammed last updated on 23/Jun/16 $${Solve}\:{the}\:{system}\:{of}\:{equation}\: \\ $$$$ \\ $$$${x}\:+\:{y}\:−\:{z}\:=\:\mathrm{9}\:\:\:……….\:{equation}\:\left({i}\right) \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}\:} +\:{z}^{\mathrm{2}\:} =\:\mathrm{99}\:\:………..\:{equation}\:\left({ii}\right) \\ $$$${y}^{\mathrm{2}} \:=\:{xz}\:\:\:………..\:{equation}\left({iii}\right) \\ $$ Commented…

How-many-idempotent-matrices-can-be-formed-from-a-diagonal-matrix-A-with-the-elements-a-i-i-for-i-1-2-3-n-

Question Number 6316 by sanusihammed last updated on 23/Jun/16 $${How}\:{many}\:{idempotent}\:{matrices}\:{can}\:{be}\:{formed}\:{from}\:{a} \\ $$$${diagonal}\:{matrix}\:{A}\:{with}\:{the}\:{elements}\: \\ $$$${a}\left({i},{i}\right)\:{for}\:{i}\:=\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},…….{n}\right\} \\ $$ Answered by nburiburu last updated on 23/Jun/16 $$\:{in}\:\mathbb{R}^{{n}×{n}} :\:…

Question-71849

Question Number 71849 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Answered by MJS last updated on 21/Oct/19 $${P}\:\:\:{Q}\:\:{P}\Rightarrow{Q}\:\:{P}\wedge{Q}\:\:{P}\wedge{Q}={P} \\ $$$$\mathrm{1}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1} \\ $$$$\mathrm{1}\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0} \\…

According-to-WolframAlpha-k-0-n-1-x-1-k-1-x-n-2-1-x-1-x-n-1-2-1-Can-anyone-work-out-how-

Question Number 6311 by FilupSmith last updated on 23/Jun/16 $$\mathrm{According}\:\mathrm{to}\:\mathrm{WolframAlpha}: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}\left(\mathrm{1}−{x}^{\left(−\mathrm{1}\right)^{{k}} } \right)=\left(\mathrm{1}−{x}\right)^{\lfloor\frac{{n}}{\mathrm{2}}\rfloor+\mathrm{1}} \left(\frac{{x}−\mathrm{1}}{{x}}\right)^{\lfloor\frac{{n}−\mathrm{1}}{\mathrm{2}}\rfloor+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{Can}\:\mathrm{anyone}\:\mathrm{work}\:\mathrm{out}\:\mathrm{how}? \\ $$ Commented by…

What-is-the-remainder-13-163-when-divided-by-99-

Question Number 137383 by bramlexs22 last updated on 02/Apr/21 $${What}\:{is}\:{the}\:{remainder}\:\mathrm{13}^{\mathrm{163}} \:{when} \\ $$$${divided}\:{by}\:\mathrm{99}\: \\ $$ Answered by EDWIN88 last updated on 02/Apr/21 $$\mathrm{By}\:\mathrm{Euler}\:\mathrm{Theorem}\: \\ $$$$\varphi\left(\mathrm{99}\right)\:=\:\mathrm{3}\left(\mathrm{3}−\mathrm{1}\right)\left(\mathrm{11}−\mathrm{1}\right)=\:\mathrm{60}\:…

1-1-3-1-5-1-9-1-15-1-25-1-45-1-75-

Question Number 137376 by benjo_mathlover last updated on 02/Apr/21 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{15}}+\frac{\mathrm{1}}{\mathrm{25}}+…+\frac{\mathrm{1}}{\mathrm{45}}+\frac{\mathrm{1}}{\mathrm{75}}+…\:=? \\ $$ Answered by EDWIN88 last updated on 02/Apr/21 $$\begin{array}{|c|c|c|c|c|}{}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{0}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }}&\hline{…}&\hline{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }}&\hline{\underset{\mathrm{n}=\mathrm{0}}…