Question Number 137314 by liberty last updated on 01/Apr/21 $$ \\ $$The diagonals of a convex quadrilateral divide the area into A, B, D and…
Question Number 71777 by Henri Boucatchou last updated on 19/Oct/19 $$\:\:\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}}}\:\left(\frac{\boldsymbol{{n}}!\:+\:\mathrm{3}^{\boldsymbol{{n}}} }{\boldsymbol{{n}}^{\boldsymbol{{n}}} \:+\:\mathrm{3}^{\boldsymbol{{n}}} }\right)\:=\:? \\ $$ Commented by mathmax by abdo last updated on…
Question Number 6240 by sanusihammed last updated on 19/Jun/16 $$\int{e}^{{x}^{\mathrm{2}} } \:\:{dx}\: \\ $$ Commented by FilupSmith last updated on 20/Jun/16 $${I}=\int{e}^{{x}^{\mathrm{2}} } {dx} \\…
Question Number 6238 by sanusihammed last updated on 19/Jun/16 Answered by Yozzii last updated on 20/Jun/16 $${Let}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+{n}^{−\mathrm{1}} \right)^{−{n}^{\mathrm{2}} } ={l}. \\ $$$${Let}\:{u}={n}^{−\mathrm{1}} \Rightarrow{l}=\underset{{u}\rightarrow\mathrm{0}^{+} }…
Question Number 137311 by bramlexs22 last updated on 01/Apr/21 Answered by liberty last updated on 01/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6234 by sanusihammed last updated on 19/Jun/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137307 by mnjuly1970 last updated on 31/Mar/21 $$\:\:\:\:\:\:\:\:…..{advanced}\:\:\:\:{calculus}….. \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}+\pi{csch}\left(\frac{\pi}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:\:\:………………………. \\ $$ Answered by Dwaipayan…
Question Number 6233 by sanusihammed last updated on 19/Jun/16 $${Diffrentiate}\:\:\:\:{y}\:\:=\:\:{x}^{\mathrm{3}{ln}\mathrm{5}} \\ $$ Answered by malwaan last updated on 19/Jun/16 $${y}^{'} =\mathrm{3}{ln}\mathrm{5}{x}^{\mathrm{3}{ln}\mathrm{5}−\mathrm{1}} \\ $$ Answered by…
Question Number 71769 by psyche last updated on 19/Oct/19 $${show}\:{that}\:{if}\:{f}\:{is}\:{a}\:{differentiable}\:{function}\:{at}\:{the}\:{point}\:{x}={a},\:{then}\:{f}\:{is}\:{continuous}\:{at}\:{x}={a}. \\ $$ Commented by kaivan.ahmadi last updated on 19/Oct/19 $${if}\:{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)\neq{f}\left({a}\right)\:\Rightarrow{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)−{f}\left({a}\right)\neq\mathrm{0}\Rightarrow \\ $$$${then}\:{f}'\left({a}\right)={lim}_{{x}\rightarrow{a}} \frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}}=+\infty\vee−\infty…
Question Number 137300 by Khalmohmmad last updated on 31/Mar/21 Terms of Service Privacy Policy Contact: info@tinkutara.com