Question Number 137290 by JulioCesar last updated on 31/Mar/21 Answered by EDWIN88 last updated on 01/Apr/21 $$\mathrm{Ostrogradski}\:\mathrm{Integral}\: \\ $$ Answered by MJS_new last updated on…
Question Number 6216 by sanusihammed last updated on 18/Jun/16 $${If}\:\:\:\:\:{x}^{\mathrm{2}} \:\:=\:\:\mathrm{2}^{{x}} \:\:\:\:\:\:{find}\:\:{x}\: \\ $$$$ \\ $$$${please}\:{i}\:{need}\:{workings} \\ $$ Answered by prakash jain last updated on…
Question Number 137285 by bemath last updated on 31/Mar/21 $$\int\:\frac{\mathrm{5}+\mathrm{2cos}\:\mathrm{2x}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:\mathrm{dx}\: \\ $$ Answered by EDWIN88 last updated on 31/Mar/21 $$\mathrm{E}=\int\:\frac{\mathrm{2cos}\:\mathrm{2x}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:\mathrm{dx}\:+\:\int\:\frac{\mathrm{5}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:\mathrm{dx} \\ $$$$\mathrm{E}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{d}\left(\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}\right)}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:+\:\int\:\frac{\mathrm{5}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:\mathrm{dx} \\ $$$$\mathrm{E}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}\:\mid\:+\:\int\:\frac{\mathrm{5}}{\mathrm{4}+\mathrm{2sin}\:\mathrm{2x}}\:\mathrm{dx}\: \\…
Question Number 71750 by TawaTawa last updated on 19/Oct/19 $$\int\:\mathrm{cos}^{\mathrm{3}} \theta\:\left(\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{3}} \theta\right) \\ $$$$\mathrm{Using}\:\mathrm{beta}\:\mathrm{function} \\ $$ Commented by mathmax by abdo last updated on 20/Oct/19…
Question Number 71751 by olalekan2 last updated on 19/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6214 by sanusihammed last updated on 18/Jun/16 $$\int\sqrt{{tanx}}\:\:{dx}\: \\ $$ Commented by nburiburu last updated on 24/Jun/16 $${by}\:\:{substitution} \\ $$$${t}=\sqrt{{tan}\:{x}}\Rightarrow{t}^{\mathrm{2}} =\:{tan}\:{x} \\ $$$$\mathrm{2}{t}\:{dt}\:=\:{sec}^{\mathrm{2}}…
Question Number 137280 by mathlove last updated on 31/Mar/21 Answered by EDWIN88 last updated on 31/Mar/21 $$\Leftrightarrow\:\mathrm{y}\:=\:\mathrm{x}^{\left(\frac{\pi}{\mathrm{ln}\:\mathrm{x}}\right)} =\:\mathrm{x}^{\pi\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{e}\right)} \\ $$$$\Leftrightarrow\:\mathrm{y}=\:\mathrm{x}^{\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{e}^{\pi} \right)} \:;\:\mathrm{y}\:=\:\mathrm{e}^{\pi} \:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{0}.…
Question Number 137282 by mathlove last updated on 31/Mar/21 Answered by EDWIN88 last updated on 31/Mar/21 $$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{fofofof}\right)\left(\mathrm{x}\right)=\mathrm{f}\:'\left(\mathrm{x}\right)\mathrm{f}\:'\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{f}\:'\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:\mathrm{f}\:'\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\right) \\ $$ Answered by floor(10²Eta[1]) last updated on…
Question Number 137277 by mnjuly1970 last updated on 31/Mar/21 $$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx}=? \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 137279 by Ñï= last updated on 31/Mar/21 $$\int\frac{{dx}}{\mathrm{sin}\:\left({a}+{x}\right)\mathrm{cos}\:\left({b}+{x}\right)}=? \\ $$ Answered by Ar Brandon last updated on 31/Mar/21 $$\mathcal{I}=\int\frac{\mathrm{dx}}{\mathrm{sin}\left(\mathrm{a}+\mathrm{x}\right)\mathrm{cos}\left(\mathrm{b}+\mathrm{x}\right)} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{a}−\mathrm{b}\right)}\int\frac{\mathrm{cos}\left(\mathrm{a}−\mathrm{b}\right)}{\mathrm{sin}\left(\mathrm{a}+\mathrm{x}\right)\mathrm{cos}\left(\mathrm{b}+\mathrm{x}\right)}\mathrm{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{cos}\left(\mathrm{a}−\mathrm{b}\right)}\int\frac{\mathrm{cos}\left[\left(\mathrm{x}+\mathrm{a}\right)−\left(\mathrm{x}+\mathrm{b}\right)\right]}{\mathrm{sin}\left(\mathrm{a}+\mathrm{x}\right)\mathrm{cos}\left(\mathrm{b}+\mathrm{x}\right)}\mathrm{dx}…