Menu Close

Author: Tinku Tara

lim-x-0-1-1-2x-4-cos-2-x-2-x-5-ln-1-2x-3-

Question Number 71360 by 20190927 last updated on 14/Oct/19 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{2x}^{\mathrm{4}} }\mathrm{cos}\:\left(\sqrt{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{5}} \mathrm{ln}\:\left(\mathrm{1}−\mathrm{2x}^{\mathrm{3}} \right)} \\ $$ Commented by mathmax by abdo last updated on…

Question-5825

Question Number 5825 by Rasheed Soomro last updated on 30/May/16 Commented by Rasheed Soomro last updated on 30/May/16 $$\mathrm{A}\:\mathrm{is}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{arc}\:\mathrm{BC}. \\ $$$$\mathrm{AB}=\mathrm{AE}=\mathrm{AG}=\mathrm{AC} \\ $$$$\mathrm{AB}\:{m}\mathrm{eans}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B} \\ $$$$\mathrm{Similarly}\:\mathrm{AE},\mathrm{AG},\mathrm{AC}\:\mathrm{are}\:\mathrm{also}\:\mathrm{distances}.…

Prove-that-among-all-triangles-which-have-same-circum-radius-the-equilateral-triangle-has-maximum-area-

Question Number 5822 by Rasheed Soomro last updated on 30/May/16 $$\mathcal{P}{rove}\:{that}\:{among}\:{all}\:\boldsymbol{{triangles}}, \\ $$$${which}\:{have}\:{same}\:\boldsymbol{{circum}}-\boldsymbol{{radius}}, \\ $$$${the}\:\boldsymbol{{equilateral}}\:\boldsymbol{{triangle}}\:{has} \\ $$$$\boldsymbol{{maximum}}\:\boldsymbol{{area}}. \\ $$ Terms of Service Privacy Policy Contact:…

L-lim-x-0-x-x-

Question Number 5821 by FilupSmith last updated on 30/May/16 $${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{{x}} \\ $$ Answered by bahmanfeshki last updated on 27/Feb/17 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{e}^{{x}\mathrm{ln}\:{x}} =\underset{{x}\rightarrow\mathrm{0}^{+} }…

Prove-that-among-all-cyclic-n-gons-which-have-same-radius-regular-n-gon-has-maximum-area-

Question Number 5816 by Rasheed Soomro last updated on 29/May/16 $$\mathcal{P}{rove}\:{that}\:{among}\:{all}\:{cyclic}\:\:{n}-{gons},\: \\ $$$${which}\:{have}\:{same}\:{radius},\:{regular}\:{n}-{gon} \\ $$$${has}\:{maximum}\:{area}. \\ $$ Commented by Yozzii last updated on 29/May/16 $${Is}\:{induction}\:{possible}\:{for}\:{n}\geqslant\mathrm{3}?…

Question-136885

Question Number 136885 by BHOOPENDRA last updated on 27/Mar/21 Answered by bramlexs22 last updated on 27/Mar/21 $$\lambda^{\mathrm{3}} −\left(\mathrm{trace}\:\mathrm{A}\right)\lambda^{\mathrm{2}} +\:\begin{pmatrix}{\mathrm{minor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{terms}}\\{\mathrm{on}\:\mathrm{the}\:\mathrm{leading}\:\mathrm{diag}\:\mathrm{A}\:}\end{pmatrix}\lambda−\mathrm{det}\left(\mathrm{A}\right)=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{3}\lambda^{\mathrm{2}} +\left(\begin{vmatrix}{\mathrm{1}\:\:\mathrm{2}}\\{\mathrm{2}\:\:\mathrm{1}}\end{vmatrix}+\begin{vmatrix}{\mathrm{1}\:\:\:\mathrm{0}}\\{\mathrm{1}\:\:\:\mathrm{1}}\end{vmatrix}+\begin{vmatrix}{\:\:\mathrm{1}\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\mathrm{1}}\end{vmatrix}\right)\lambda−\mathrm{3}\:=\mathrm{0} \\ $$$$\lambda^{\mathrm{3}}…