Menu Close

Author: Tinku Tara

1-gt-lim-x-1-pi-1-pi-2-1-pi-3-1-pi-n-2-gt-lim-x-1-2-2-3-2-n-2-1-n-3-

Question Number 136758 by mathlove last updated on 25/Mar/21 $$\:\:\mathrm{1}==>\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\pi}+\frac{\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{\mathrm{1}}{\pi^{\mathrm{3}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\pi^{{n}} }\right)=? \\ $$$$ \\ $$$$\:\mathrm{2}=>\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}+\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\centerdot\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} }{\mathrm{1}−{n}^{\mathrm{3}} }=? \\ $$…

Question-71216

Question Number 71216 by TawaTawa last updated on 13/Oct/19 Answered by mind is power last updated on 13/Oct/19 $$\Sigma\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{x}}{\mathrm{n}!}=\Sigma\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}+\mathrm{x}\Sigma\frac{\mathrm{1}}{\mathrm{n}!} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!}=\mathrm{1}+\sum_{\mathrm{n}\geqslant\mathrm{2}}…

Given-system-equation-x-2-3xy-y-2-1-0-x-3-y-3-7-0-has-solution-x-1-y-1-amp-x-2-y-2-for-x-y-R-Find-the-value-of-x-1-2-y-2-x-2-2-y-1-

Question Number 136749 by EDWIN88 last updated on 25/Mar/21 $$\mathrm{Given}\:\mathrm{system}\:\mathrm{equation}\: \\ $$$$\:\begin{cases}{\mathrm{x}^{\mathrm{2}} +\mathrm{3xy}+\mathrm{y}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}}\\{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} −\mathrm{7}=\mathrm{0}}\end{cases}\:\mathrm{has}\:\mathrm{solution}\: \\ $$$$\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right)\:\&\left(\mathrm{x}_{\mathrm{2}} ,\mathrm{y}_{\mathrm{2}} \right)\:\mathrm{for}\:\mathrm{x},\mathrm{y}\in\mathbb{R}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{x}_{\mathrm{1}} ^{\mathrm{2}}…