Menu Close

Author: Tinku Tara

f-x-1-n-2-x-n-n-

Question Number 135103 by frc2crc last updated on 10/Mar/21 $${f}\left({x}\right)=\mathrm{1}+\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(−{x}\right)^{{n}} }{{n}} \\ $$ Commented by Dwaipayan Shikari last updated on 10/Mar/21 $$\mathrm{1}−\left(−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}}…

let-f-a-0-dx-x-4-2x-2-a-with-a-real-and-a-gt-1-1-determine-a-explicit-form-for-f-a-2-calculate-g-a-0-dx-x-4-2x-2-a-2-3-find-the-values-of-integrals-0-

Question Number 69564 by mathmax by abdo last updated on 25/Sep/19 $${let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \:+{a}}\:\:\:{with}\:{a}\:{real}\:{and}\:{a}>\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{determine}\:{a}\:{explicit}\:{form}\:{for}\:{f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{calculate}\:{g}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} }…

Let-A-denotes-the-Set-of-Algebraic-Numbers-and-T-the-Set-of-Trancedental-Numbers-Discuss-the-following-Are-A-and-T-closed-with-respect-to-addition-and-multiplication-Are-A-0-and-T-clos

Question Number 4027 by Rasheed Soomro last updated on 27/Dec/15 $${Let}\:\mathbb{A}\:{denotes}\:{the}\:{Set}\:{of}\:{Algebraic}\:{Numbers} \\ $$$${and}\:\:\mathbb{T}\:\:\:{the}\:{Set}\:{of}\:{Trancedental}\:{Numbers}. \\ $$$${Discuss}\:{the}\:{following}: \\ $$$$\bullet{Are}\:\mathbb{A}\:{and}\:\mathbb{T}\:\:\boldsymbol{{closed}}\:{with}\:{respect}\:{to}\:\: \\ $$$$\boldsymbol{{addition}}\:{and}\:\boldsymbol{{multiplication}}\:? \\ $$$$\bullet{Are}\:\mathbb{A}−\left\{\mathrm{0}\right)\:\:{and}\:\mathbb{T}\:\:\boldsymbol{{closed}}\:{with}\:{respect}\:{to}\:\: \\ $$$$\boldsymbol{{division}}? \\ $$…

Question-135099

Question Number 135099 by 0731619177 last updated on 10/Mar/21 Answered by Dwaipayan Shikari last updated on 10/Mar/21 $${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{f}\left({ax}\right)−{f}\left({bx}\right)}{{x}}{dx} \\ $$$${I}'\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {f}'\left({ax}\right){dx}=\frac{\mathrm{1}}{{a}}\underset{{z}\rightarrow\infty} {\mathrm{lim}}\left({f}\left({z}\right)−{f}\left(\mathrm{0}\right)\right)…

f-n-1-x-x-f-n-x-g-n-1-x-g-n-x-x-h-n-1-x-h-n-x-h-n-x-f-0-x-g-0-x-h-0-x-x-if-f-x-lim-n-f-n-x-g-x-lim-n-g-n-x-h-x-lim-n-h-n-x-does-f-x-g-x-h-x-

Question Number 4025 by 123456 last updated on 26/Dec/15 $${f}_{{n}+\mathrm{1}} \left({x}\right)={x}^{{f}_{{n}} \left({x}\right)} \\ $$$${g}_{{n}+\mathrm{1}} \left({x}\right)=\left[{g}_{{n}} \left({x}\right)\right]^{{x}} \\ $$$${h}_{{n}+\mathrm{1}} \left({x}\right)=\left[{h}_{{n}} \left({x}\right)\right]^{{h}_{{n}} \left({x}\right)} \\ $$$${f}_{\mathrm{0}} \left({x}\right)={g}_{\mathrm{0}} \left({x}\right)={h}_{\mathrm{0}}…

find-1-C-ZImZ-2-dz-if-C-Z-1-pi-0-2-C-dz-Z-4-1-if-C-z-1-2i-1-4-help-me-sir-

Question Number 135091 by mohammad17 last updated on 10/Mar/21 $${find} \\ $$$$\left(\mathrm{1}\right)\int_{{C}} {ZImZ}^{\mathrm{2}} {dz}\:\:{if}\:{C}=\left\{\mid{Z}\mid=\mathrm{1}:−\pi\leqslant\theta\leqslant\mathrm{0}\right\} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\int_{{C}} \frac{{dz}}{{Z}^{\mathrm{4}} +\mathrm{1}}\:\:\:{if}\:{C}=\mid{z}−\mathrm{1}+\mathrm{2}{i}\mid=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\…