Menu Close

Author: Tinku Tara

e-2-Proof-Let-x-e-2-2-2x-e-2-2x-e-2-e-2-e-2-2ex-4x-e-2-4-4x-4-2ex-e-2-x-2-4x-4-x-2-2ex-e-2-x-2-2-x-e-2-x-2-2-x-e-2-x-2-x-e-2-e-e-2-

Question Number 203035 by Frix last updated on 07/Jan/24 $$\mathrm{e}=\mathrm{2} \\ $$$$\mathrm{Proof}: \\ $$$$\mathrm{Let}\:{x}=\frac{\mathrm{e}+\mathrm{2}}{\mathrm{2}} \\ $$$$\mathrm{2}{x}=\mathrm{e}+\mathrm{2} \\ $$$$\mathrm{2}{x}\left(\mathrm{e}−\mathrm{2}\right)=\left(\mathrm{e}+\mathrm{2}\right)\left(\mathrm{e}−\mathrm{2}\right) \\ $$$$\mathrm{2e}{x}−\mathrm{4}{x}=\mathrm{e}^{\mathrm{2}} −\mathrm{4} \\ $$$$−\mathrm{4}{x}+\mathrm{4}=−\mathrm{2e}{x}+\mathrm{e}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}}…

Question-203017

Question Number 203017 by mnjuly1970 last updated on 07/Jan/24 Answered by som(math1967) last updated on 07/Jan/24 $${let}\:{ar}\:{ofEDCF}={a}\:,\bigtriangleup{AEB}={b} \\ $$$$\frac{\bigtriangleup{ABD}}{\bigtriangleup{BCD}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{{Green}+{b}}{{Magenta}+{a}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\bigtriangleup{ABF}}{\bigtriangleup{ACF}}=\frac{{x}}{\mathrm{6}} \\ $$$$\Rightarrow\frac{{Majenta}+{b}}{{Green}+{a}}=\frac{{x}}{\mathrm{6}}…

Question-203009

Question Number 203009 by cortano12 last updated on 07/Jan/24 Answered by som(math1967) last updated on 07/Jan/24 $${Perimeter}=\mathrm{80} \\ $$$${AD}={AG}+{GD}=\mathrm{8}+\mathrm{8}=\mathrm{16}{unit} \\ $$$${AB}=\frac{\mathrm{80}}{\mathrm{2}}\:−\mathrm{16}=\mathrm{24}{unit} \\ $$$${FB}=\mathrm{24}−\mathrm{8}=\mathrm{16} \\ $$$${FQ}=\mathrm{16}−{R}…

Help-me-Find-all-the-Ideals-of-the-quotient-Ring-Z-18Z-of-the-integer-ring-Z-

Question Number 202970 by MathedUp last updated on 06/Jan/24 $$\mathrm{Help}\:\mathrm{me}\:\boldsymbol{\sigma}\: \:\boldsymbol{\sigma} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{Ideals}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quotient}\:\mathrm{Ring}\: \\ $$$$\mathbb{Z}/\mathrm{18}\mathbb{Z}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{ring}\:\mathbb{Z}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com