Question Number 69478 by Henri Boucatchou last updated on 24/Sep/19 $$\:\:\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{lim}sin}}\left(\boldsymbol{{n}\pi}\right)\:=\:? \\ $$ Commented by mathmax by abdo last updated on 24/Sep/19 $${sin}\left({n}\pi\right)=\mathrm{0}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {sin}\left({n}\pi\right)=\mathrm{0}…
Question Number 3943 by Rasheed Soomro last updated on 25/Dec/15 $$\mathcal{W}{hat}\:{is}\:{the}\:{area}\:\:{of}\:\:{overlapping}\:{region} \\ $$$${of}\:{three}\:{circles}\:{of}\:{radii}\:\boldsymbol{\mathrm{r}}_{\mathrm{1}} \:,\:\boldsymbol{\mathrm{r}}_{\mathrm{2}} \:,\:\boldsymbol{\mathrm{r}}_{\mathrm{3}} \:{with}\:{their} \\ $$$${respective}\:{centres}\:\boldsymbol{\mathrm{C}}_{\mathrm{1}} \:,\:\boldsymbol{\mathrm{C}}_{\mathrm{2}} \:{and}\:\boldsymbol{\mathrm{C}}_{\mathrm{3}} \:{when} \\ $$$$\boldsymbol{\mathrm{r}}_{\mathrm{1}} +\boldsymbol{\mathrm{r}}_{\mathrm{2}} >\:\boldsymbol{\mathrm{C}}_{\mathrm{1}}…
Question Number 69479 by MJS last updated on 24/Sep/19 $$\mathrm{to}\:\mathrm{Sir}\:\mathrm{Aifour}: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{polynomes}\:\mathrm{of}\:\mathrm{both}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{and} \\ $$$$\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{in}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are} \\ $$$$\in\mathbb{Z}\:\mathrm{or}\:\in\mathbb{Q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{not}\:\mathrm{trivial} \\ $$$$\mathrm{i}.\mathrm{e}. \\ $$$$\left({t}−\alpha\right)\left({t}+\frac{\alpha}{\mathrm{2}}−\sqrt{\beta}\right)\left({t}+\frac{\alpha}{\mathrm{2}}+\sqrt{\beta}\right)=\mathrm{0}\wedge{t}={x}+\frac{\gamma}{\mathrm{3}} \\ $$$$\Leftrightarrow \\…
Question Number 135004 by bramlexs22 last updated on 09/Mar/21 $$ \\ $$the closest distance from the point on the curve y = x ^ 3-1…
Question Number 135000 by bobhans last updated on 09/Mar/21 $$ \\ $$Find the equation of the circle through the points of intersection of x^2+y^2−1=0,x^2+y^2−2x−4y+1=0 and touching the…
Question Number 3930 by Filup last updated on 25/Dec/15 $${y}=\frac{\mathrm{log}_{{e}} \left(\frac{{x}}{{m}}−{sa}\right)}{{r}^{\mathrm{2}} } \\ $$$${yr}^{\mathrm{2}} =\mathrm{log}_{\mathrm{e}} \left(\frac{{x}}{{m}}−{sa}\right) \\ $$$${e}^{{yr}^{\mathrm{2}} } =\frac{{x}}{{m}}−{sa} \\ $$$${me}^{{rry}} ={x}−{mas} \\ $$$$…
Question Number 3929 by Filup last updated on 25/Dec/15 $$\mathrm{For}: \\ $$$${S}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$$${S}={H}_{{n}} \:\:\:\:{Harmonic}\:{sequence} \\ $$$${H}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}} \\ $$$${Can}\:{you}\:{solve}\:{the}\:{partial}\:{sum}? \\ $$ Commented…
Question Number 3928 by Filup last updated on 24/Dec/15 $$\mathrm{Is}\:\mathrm{this}\:\mathrm{solvable}: \\ $$$$ \\ $$$${y}=\lfloor{f}\left({x}\right)\rfloor\:\:\:\:\:\:\:\:\:\mathrm{floor}\:\mathrm{function} \\ $$$$\frac{{dy}}{{dx}}=??? \\ $$ Commented by Yozzii last updated on 25/Dec/15…
Question Number 69462 by mhmd last updated on 23/Sep/19 $$ \\ $$$${find}\:{the}\:{equation}\:{of}\:{the}\:{circle}\:{which}\:{ends}\:{one}\:{of}\:{the}\:{diameters}\:{of}\:{two}\:{points}\:{p}_{\mathrm{1}} \left(−\mathrm{2},\mathrm{3}\right)\:{and}\:{p}_{\mathrm{2}} \left(\mathrm{4},\mathrm{5}\right) \\ $$ Commented by mathmax by abdo last updated on 23/Sep/19…
Question Number 3927 by prakash jain last updated on 24/Dec/15 $$\mathrm{5}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{randomly}\:\mathrm{from}\:\mathbb{Z}^{+} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one} \\ $$$$\mathrm{of}\:\mathrm{them}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{5}. \\ $$ Commented by prakash jain last updated on 26/Dec/15…