Question Number 3824 by Yozzii last updated on 21/Dec/15 $${Box}\:{I}\:{has}\:\mathrm{3}\:{red}\:{and}\:\mathrm{5}\:{white}\:{balls}, \\ $$$${while}\:{Box}\:{II}\:{contains}\:\mathrm{4}\:{red}\:{and}\:\mathrm{2}\: \\ $$$${white}\:{balls}.\:{A}\:{ball}\:{is}\:{chosen}\:{at}\:{random} \\ $$$${from}\:{the}\:{first}\:{box}\:{and}\:{placed}\:{in}\:{the} \\ $$$${second}\:{box}\:{without}\:{observing}\:{its}\:{colour}. \\ $$$${Then}\:{a}\:{ball}\:{is}\:{drawn}\:{from}\:{the}\:{second} \\ $$$${box}.\:{Find}\:{the}\:{probability}\:{that}\:{it}\:{is}\:{white}. \\ $$ Commented…
Question Number 3823 by Rasheed Soomro last updated on 21/Dec/15 $${Consider}\:{a}\:{triangle}\:\mathrm{ABC}.\:{Let}\:\mathrm{D}\:\:{and}\:\:\mathrm{E} \\ $$$${are}\:{two}\:{points}\:{on}\:\mathrm{AB}\:\:{and}\:\:\mathrm{AC}\:{respectively} \\ $$$${such}\:{that}\:\mathrm{DE}\:\parallel\:\mathrm{BC}.\:{Now}\:{there}\:{are}\:{two} \\ $$$${parts}\:{of}\:\bigtriangleup\mathrm{ABC}\::\:\bigtriangleup\mathrm{ADE}\:\:\:{and}\:\:{trapizoid} \\ $$$$\mathrm{DBCE}.\:{If}\:{these}\:{two}\:{regions}\:{have}\:{same}\:{area} \\ $$$${What}\:{will}\:{be}\:{the}\:{ratio}\:{of}\:{two}\:{distances}\:: \\ $$$$\left({i}\right)\:{distance}\:{of}\:\mathrm{DE}\:{from}\:{point}\:\mathrm{A}\:{and} \\ $$$$\left({ii}\right)\:{distance}\:{between}\:\mathrm{BC}\:{and}\:\mathrm{DE}\:\:?…
Question Number 69355 by cesar.marval.larez@gmail.com last updated on 22/Sep/19 $$ \\ $$$${Find}\:{the}\:{maximun}\:{and}\:{minimum}\: \\ $$$${values}\:{of}\:{the}\:{function}\:{f}\left({x}\right)={x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{7} \\ $$$${and}\:{sketch}\:{its}\:{graph}\: \\ $$ Answered by MJS last updated on…
Question Number 134890 by Khalmohmmad last updated on 08/Mar/21 Answered by bemath last updated on 08/Mar/21 $$\mathrm{let}\:{a}\:=\:\mathrm{16}.\mathrm{2}\overset{−} {\mathrm{7}}\:;\:\mathrm{10}{a}\:=\:\mathrm{162}.\overset{−} {\mathrm{7}} \\ $$$$\Rightarrow\:{a}\:=\:\frac{\mathrm{146}.\mathrm{5}}{\mathrm{9}} \\ $$$$\mathrm{let}\:{b}\:=\:\mathrm{15}.\mathrm{1}\overset{−} {\mathrm{7}}\:;\:\mathrm{10}{b}\:=\:\mathrm{151}.\overset{−} {\mathrm{7}}…
Question Number 134884 by abdullahquwatan last updated on 08/Mar/21 $$\mathrm{if}\:\mathrm{2x}^{\mathrm{3}} −\mathrm{2}=\int_{{a}} ^{\mathrm{x}} \mathrm{f}\left(\mathrm{t}\right)\mathrm{dt},\:\mathrm{then}\:\mathrm{f}\:'\left({a}\right)=… \\ $$ Answered by bemath last updated on 08/Mar/21 $$\:\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\:\mathrm{2x}^{\mathrm{3}} −\mathrm{2}\:\right]=\:\mathrm{f}\left(\mathrm{x}\right) \\…
Question Number 69347 by Askash last updated on 22/Sep/19 $${If}\:{a}\:{well}\:{is}\:{dug}\:\mathrm{21}{m}\:{deep}\:{and}\:\mathrm{1}.\mathrm{4}{m} \\ $$$${in}\:{radius},\:{how}\:{much}\:{earth}\:{is}\:{dug} \\ $$$${out}\:{from}\:{it}?\:{If}\:{the}\:{inner}\:{wall}\:{of} \\ $$$${well}\:{is}\:{plastered}\:{at}\:\:{Rupees}\:\mathrm{20}\: \\ $$$${per}\:{m}^{\mathrm{2}} .\:{WHAT}\:\:\mathbb{WILL}\:\:{BE}\:\:{ITS} \\ $$$$\mathcal{COST}\:? \\ $$$$ \\ $$$$…
Question Number 3808 by Rasheed Soomro last updated on 21/Dec/15 $${A}\:{chord}\:{divides}\:\:{the}\:{circle}\:{in}\:{two} \\ $$$${segments},{having}\:{areas}\:{s}_{\mathrm{1}} \:{and}\:\:{s}_{\mathrm{2}} . \\ $$$${If}\:{diameter},\:{perpendicular}\:{to}\:{this} \\ $$$${chord}\:{is}\:{cut}\:{into}\:\mathrm{1}:\mathrm{3}\:{by}\:{the}\:{chord}\:,{what}\:{is}\:{s}_{\mathrm{1}} :{s}_{\mathrm{2}} \:? \\ $$$$ \\ $$…
Question Number 3807 by Rasheed Soomro last updated on 21/Dec/15 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }=? \\ $$ Answered by Yozzii last updated on 21/Dec/15 $${s}=\underset{{n}=\mathrm{0}} {\overset{\infty}…
Question Number 134878 by bemath last updated on 08/Mar/21 Answered by EDWIN88 last updated on 08/Mar/21 $$\mathrm{B}\left(\theta\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{100}.\mathrm{sin}\:\theta\:=\:\mathrm{50}\:\mathrm{sin}\:\theta\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{radius}\:\mathrm{of}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{is}\:\mathrm{r}\:=\:\mathrm{10}.\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right) \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{semi}\:\mathrm{circle}\:\mathrm{A}\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\mathrm{100}.\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right)\right) \\ $$$$\mathrm{A}\left(\theta\right)\:=\:\mathrm{50}\pi\:\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right)…
Question Number 69338 by Rasheed.Sindhi last updated on 22/Sep/19 Commented by Prithwish sen last updated on 22/Sep/19 $$\mathrm{it}\:\mathrm{is}\:\mathrm{the}\:\mathrm{series}\:\mathrm{of} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+…… \\ $$$$\mathrm{tan}^{−\mathrm{1}} \mathrm{x}=\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{5}}−\frac{\mathrm{x}^{\mathrm{7}}…