Question Number 2980 by Filup last updated on 02/Dec/15 $$\mathrm{Prove}\:\mathrm{that}\:\frac{{d}}{{dx}}\left({e}^{{x}} \right)={e}^{{x}} \\ $$$$\mathrm{Assume}\:\mathrm{that}\:\mathrm{you}\:\mathrm{do}\:\mathrm{not}\:\mathrm{know}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{above}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{true}. \\ $$ Answered by RasheedAhmad last updated on 02/Dec/15 $${e}^{{x}}…
Question Number 134049 by benjo_mathlover last updated on 27/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 2979 by Filup last updated on 02/Dec/15 $$\mathrm{If}\:\mathrm{a}\:\mathrm{parabola}\:\mathrm{is}\:\mathrm{in}\:\mathrm{form}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}, \\ $$$$\mathrm{why}\:\mathrm{is}\:{g}\left({x}\right)={e}^{{x}} +{e}^{−{x}} \:\:\mathrm{parabolic}? \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{it}\:\mathrm{have}\:\mathrm{to}\:\mathrm{do}\:\mathrm{with}\:\mathrm{its}\:\mathrm{locus}? \\ $$ Commented by 123456 last…
Question Number 68515 by azizullah last updated on 12/Sep/19 Commented by Prithwish sen last updated on 13/Sep/19 $$\left[\mathrm{z}\left(\mathrm{z}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{3}+\mathrm{2i}\right)\left(\mathrm{3}+\mathrm{2i}−\mathrm{6}\right)\right]^{\mathrm{2}} =\left[\left(\mathrm{2i}\right)^{\mathrm{2}} −\left(\mathrm{3}\right)^{\mathrm{2}} \right]^{\mathrm{2}} \\ $$$$=\left(−\mathrm{13}\right)^{\mathrm{2}} =\mathrm{169}…
Question Number 68510 by oyemi kemewari last updated on 12/Sep/19 Answered by mr W last updated on 14/Sep/19 $${v}=\sqrt{\mathrm{2}{gh}} \\ $$$${base}\:{area}\:{of}\:{tanks}={A}=\mathrm{1}\:{ft}^{\mathrm{2}} \\ $$$${A}\frac{{dh}}{\mathrm{2}}=−\frac{\pi{d}^{\mathrm{2}} }{\mathrm{4}}{vdt} \\…
Question Number 68508 by oyemi kemewari last updated on 12/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68509 by oyemi kemewari last updated on 12/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68506 by oyemi kemewari last updated on 12/Sep/19 $${y}'=\mathrm{4}{y}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{1} \\ $$$${what}\:{the}\:{primitive}\:{solution} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 134040 by benjo_mathlover last updated on 27/Feb/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\: \\ $$$$\mathrm{between}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}−\mathrm{1and}\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}−\mathrm{1} \\ $$ Commented by benjo_mathlover last updated on 27/Feb/21…
Question Number 2970 by Syaka last updated on 01/Dec/15 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\underset{\mathrm{0}} {\overset{{z}} {\int}}\underset{\mathrm{0}} {\overset{{y}} {\int}}\:{sin}\:\left({x}\:+\:{y}\:+\:{z}\right)\:{dx}\:{dy}\:{dz}\:=\:…? \\ $$ Answered by Yozzi last updated on 02/Dec/15…