Menu Close

Author: Tinku Tara

Sketch-the-shear-and-moment-diagrams-of-a-simply-supported-beam-of-6m-The-load-on-the-beam-consists-of-UDL-of-15KN-m-over-the-left-half-of-the-span-

Question Number 68222 by necxxx last updated on 07/Sep/19 $${Sketch}\:{the}\:{shear}\:{and}\:{moment}\:{diagrams} \\ $$$${of}\:{a}\:{simply}\:{supported}\:{beam}\:{of}\:\mathrm{6}{m}.{The} \\ $$$${load}\:{on}\:{the}\:{beam}\:{consists}\:{of}\:{UDL}\:{of} \\ $$$$\mathrm{15}{KN}/{m}\:{over}\:{the}\:{left}\:{half}\:{of}\:{the}\:{span}. \\ $$$$ \\ $$ Commented by necxxx last updated…

Let-consider-a-n-n-and-u-n-n-two-reals-sequence-defined-such-as-a-0-1-n-gt-1-a-n-1-p-0-n-a-p-a-n-p-and-p-0-n-a-p-u-n-p-0-Part1-1-Express-n-gt-1-a-n-i

Question Number 68220 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…

lim-x-x-2-ln-1-1-x-2-3-tan-1-x-1-1-3-tan-1-x-1-1-3-

Question Number 133758 by EDWIN88 last updated on 24/Feb/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}/\mathrm{3}} }\right)\left(\mathrm{tan}^{−\mathrm{1}} \sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}\:−\mathrm{tan}^{−\mathrm{1}} \sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\:\right)=? \\ $$ Answered by liberty last updated on 24/Feb/21 $$\left(\mathrm{i}\right)\:\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}/\mathrm{3}}…

Let-consider-a-n-n-and-u-n-n-two-reals-sequence-defined-such-as-a-0-1-n-gt-1-a-n-1-p-0-n-a-p-a-n-p-and-p-0-n-a-p-u-n-p-0-Part1-1-Express-n-gt-1-a-n-i

Question Number 68219 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:\:{Let}\:{consider}\:\left({a}_{{n}} \right)_{{n}} \:{and}\:\left({u}_{{n}} \right)_{{n}} \:{two}\:{reals}\:\:{sequence}\:\: \\ $$$${defined}\:{such}\:{as}\:\:\:{a}_{\mathrm{0}} =\mathrm{1}\:,\:\forall\:{n}>\mathrm{1}\:\:{a}_{{n}+\mathrm{1}} =\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{p}}…

Question-68212

Question Number 68212 by peter frank last updated on 07/Sep/19 Answered by $@ty@m123 last updated on 07/Sep/19 $${Let}\:{required}\:{equation}\:{of}\:{line}: \\ $$$${y}={m}_{\mathrm{1}} {x}+{c}\:\:\:…..\left(\mathrm{1}\right) \\ $$$${Given}\:{line}:\:\mathrm{4}{x}+\mathrm{3}{y}=\mathrm{21} \\ $$$${Its}\:{slope}:\:{m}_{\mathrm{2}}…

Question-68210

Question Number 68210 by peter frank last updated on 07/Sep/19 Answered by $@ty@m123 last updated on 08/Sep/19 $${Let}\:\frac{\mathrm{sin}\:{A}}{{a}}=\frac{\mathrm{sin}\:{B}}{{b}}=\frac{\mathrm{sin}\:{C}}{{c}}={R} \\ $$$$\Rightarrow\mathrm{sin}\:{A}={aR},\:\mathrm{sin}\:{B}={bR},\:\mathrm{sin}\:{C}={cR}\:…\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{sin}\:\left({A}−{B}\right)\mathrm{sin}\:{C}}{\mathrm{1}+\mathrm{cos}\:\left({A}−{B}\right)\mathrm{cos}\:{C}} \\ $$$$=\:\frac{\mathrm{sin}\:\left({A}−{B}\right)\mathrm{sin}\:\left({A}+{B}\right)}{\mathrm{1}−\mathrm{cos}\:\left({A}−{B}\right)\mathrm{cos}\:\left({A}+{B}\right)} \\…

Bases-on-suggestion-from-Filup-and-some-discussion-on-that-I-am-suggesting-that-we-sequence-series-and-related-function-as-a-topic-for-this-month-x-n-1-n-x-x-R-x-gt-1-Show-that-x-

Question Number 2675 by prakash jain last updated on 24/Nov/15 $$\mathrm{Bases}\:\mathrm{on}\:\mathrm{suggestion}\:\mathrm{from}\:\mathrm{Filup}\:\mathrm{and}\:\mathrm{some} \\ $$$$\mathrm{discussion}\:\mathrm{on}\:\mathrm{that}\:\mathrm{I}\:\mathrm{am}\:\mathrm{suggesting}\:\mathrm{that}\:\mathrm{we} \\ $$$$\mathrm{sequence},\:\mathrm{series}\:\mathrm{and}\:\mathrm{related}\:\mathrm{function}\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{topic}\:\mathrm{for}\:\mathrm{this}\:\mathrm{month}. \\ $$$$\zeta\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{x}} ,\:{x}\in\mathbb{R},\:{x}>\mathrm{1} \\ $$$$\mathrm{Show}\:\mathrm{that} \\…

I-have-4-collinear-points-A-a-0-B-b-0-C-c-0-and-D-d-0-where-a-b-c-d-gt-0-Find-a-point-E-x-y-such-that-the-following-expression-is-minimised-2-AE-BE-CE-DE-

Question Number 2672 by Yozzi last updated on 24/Nov/15 $${I}\:{have}\:\mathrm{4}\:{collinear}\:{points}\:{A}\left({a},\mathrm{0}\right), \\ $$$${B}\left({b},\mathrm{0}\right),\:{C}\left({c},\mathrm{0}\right)\:{and}\:{D}\left({d},\mathrm{0}\right)\:{where}\: \\ $$$$\forall{a},{b},{c},{d}>\mathrm{0}.\:{Find}\:{a}\:{point}\:{E}\left({x},{y}\right)\:{such} \\ $$$${that}\:{the}\:{following}\:{expression}\:{is} \\ $$$${minimised}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\left({AE}+{BE}+{CE}+{DE}\right). \\ $$ Commented by Rasheed…