Menu Close

Author: Tinku Tara

Ok-guys-We-all-LOVE-mathematics-So-I-have-came-up-with-a-simple-and-possibly-effect-way-to-not-only-improve-our-abilities-as-mathematicians-but-also-have-some-fun-too-We-should-hold-a-competiti

Question Number 2649 by Filup last updated on 24/Nov/15 $$\mathrm{Ok}\:\mathrm{guys}.\:\mathrm{We}\:\mathrm{all}\:\mathscr{LOVE}\:\mathrm{mathematics}. \\ $$$$\mathrm{So},\:\mathrm{I}\:\mathrm{have}\:\mathrm{came}\:\mathrm{up}\:\mathrm{with}\:\mathrm{a}\:\mathrm{simple}\:\mathrm{and} \\ $$$$\mathrm{possibly}\:\mathrm{effect}\:\mathrm{way}\:\mathrm{to}\:\mathrm{not}\:\mathrm{only}\:\mathrm{improve} \\ $$$$\mathrm{our}\:\mathrm{abilities}\:\mathrm{as}\:\mathrm{mathematicians},\:\mathrm{but}\:\mathrm{also} \\ $$$$\mathrm{have}\:\mathrm{some}\:\mathrm{fun},\:\mathrm{too}. \\ $$$$ \\ $$$$\mathrm{We}\:\mathrm{should}\:\mathrm{hold}\:\mathrm{a}\:\mathrm{competition}\:\mathrm{every} \\ $$$$\mathrm{now}\:\mathrm{and}\:\mathrm{again}.\:\mathrm{We}\:\mathrm{can},\:\mathrm{for}\:\mathrm{example} \\…

Question-68183

Question Number 68183 by ajfour last updated on 06/Sep/19 Commented by ajfour last updated on 06/Sep/19 $${QBC}\:{and}\:{BPD}\:{are}\:{tangent}\:{and} \\ $$$${normal}\:{respectively}\:{to} \\ $$$${the}\:{cubic}\:{function}\:{y}={x}^{\mathrm{3}} −\mathrm{19}{x}+\mathrm{30} \\ $$$${at}\:{one}\:{of}\:{its}\:{root}\:{and}\:{QAD}\:{and} \\…

lim-x-0-cosx-sin2x-1-x-3-

Question Number 68178 by Mikael last updated on 06/Sep/19 $$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{\left({cosx}\right)^{{sin}\mathrm{2}{x}} −\mathrm{1}}{{x}^{\mathrm{3}} }=? \\ $$ Commented by mathmax by abdo last updated on 06/Sep/19 $${let}\:{f}\left({x}\right)\:=\frac{\left({cosx}\right)^{{sin}\left(\mathrm{2}{x}\right)}…

n-lines-are-drawn-inside-a-circle-in-such-a-way-that-the-circle-has-been-divided-in-maximum-number-of-parts-Determine-this-maximum-number-

Question Number 2642 by Rasheed Soomro last updated on 24/Nov/15 $${n}\:{lines}\:{are}\:{drawn}\:{inside}\:{a}\:{circle}\:{in}\:{such}\:{a}\:{way}\:{that}\: \\ $$$${the}\:{circle}\:{has}\:{been}\:{divided}\:{in}\:{maximum}\:{number}\:{of} \\ $$$${parts}.\:{Determine}\:{this}\:{maximum}\:{number}. \\ $$ Commented by RasheedAhmad last updated on 24/Nov/15 $$\bullet{One}\:{line}\:{can}\:{divide}\:{the}\:{circle}…

n-1-cos-pi-e-n-n-4-

Question Number 133708 by Dwaipayan Shikari last updated on 23/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{cos}\left(\left(\pi+{e}\right){n}\right)}{{n}^{\mathrm{4}} } \\ $$ Answered by mindispower last updated on 24/Feb/21 $$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{sin}\left({nx}\right)}{{n}}={Im}\:\underset{{n}\geqslant\mathrm{1}}…