Menu Close

Author: Tinku Tara

Question-67983

Question Number 67983 by peter frank last updated on 03/Sep/19 Commented by Abdo msup. last updated on 03/Sep/19 $$\left.{b}\right)\:{let}\:{f}\left({x}\right)=\left(\frac{\mathrm{1}}{{x}}\right)^{{x}\:} \:\Rightarrow{f}\left({x}\right)={x}^{−{x}} \:={e}^{−{xln}\left({x}\right)} \\ $$$$\left.{f}\:{is}?{defined}\:{on}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$${lim}_{{x}\rightarrow\mathrm{0}\:{and}\:{x}>\mathrm{0}}…

Prove-or-disprove-that-for-even-positive-n-2-k-1-n-2-1-1-k-n-k-1-n-2-n-n-2-2-2-

Question Number 2441 by Yozzi last updated on 20/Nov/15 $${Prove}\:{or}\:{disprove}\:{that}\:,\:{for}\:{even}\: \\ $$$${positive}\:{n}, \\ $$$$\mathrm{2}×\underset{{k}=\mathrm{1}} {\overset{\frac{{n}}{\mathrm{2}}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{k}} \begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}+\left(−\mathrm{1}\right)^{\left({n}/\mathrm{2}\right)} \frac{{n}!}{\left(\left({n}/\mathrm{2}\right)!\right)^{\mathrm{2}} }=−\mathrm{2} \\ $$ Commented by Rasheed Soomro…

Question-67977

Question Number 67977 by behi83417@gmail.com last updated on 02/Sep/19 Commented by behi83417@gmail.com last updated on 02/Sep/19 $$\boldsymbol{\mathrm{AD}}=\boldsymbol{\mathrm{DC}},\angle\boldsymbol{\mathrm{AEB}}=\mathrm{90}^{\bullet} \:\:. \\ $$$$\boldsymbol{\mathrm{find}}:\:\:\:\boldsymbol{\mathrm{ED}}\:\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}. \\ $$ Answered by $@ty@m123…

Question-67973

Question Number 67973 by behi83417@gmail.com last updated on 02/Sep/19 Commented by behi83417@gmail.com last updated on 02/Sep/19 $$\mathrm{A}\overset{\bigtriangleup} {\mathrm{B}C},\mathrm{is}\:\mathrm{given}. \\ $$$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}: \\ $$$$\mathrm{1}.\:\:\:\:\:\frac{\boldsymbol{\mathrm{BX}}}{\boldsymbol{\mathrm{XC}}}\:×\:\:\frac{\boldsymbol{\mathrm{CY}}}{\boldsymbol{\mathrm{YA}}}\:×\:\frac{\boldsymbol{\mathrm{AZ}}}{\boldsymbol{\mathrm{ZB}}}=\mathrm{1}. \\ $$$$\mathrm{2}.\:\:\:\:\:\frac{\boldsymbol{\mathrm{PX}}}{\boldsymbol{\mathrm{XA}}}\:+\:\:\frac{\boldsymbol{\mathrm{PY}}}{\boldsymbol{\mathrm{YB}}}\:+\:\frac{\boldsymbol{\mathrm{PZ}}}{\boldsymbol{\mathrm{ZC}}}=\mathrm{1}. \\…