Menu Close

Author: Tinku Tara

Prove-that-for-m-0-1-2-3-lim-x-m-x-

Question Number 2434 by Yozzi last updated on 20/Nov/15 $${Prove}\:{that}\:{for}\:{m}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow−{m}} {\mathrm{lim}}\Gamma\left({x}\right)=\infty. \\ $$ Answered by 123456 last updated on 25/Nov/15 $$\Gamma\left({x}+\mathrm{1}\right)={x}\Gamma\left({x}\right) \\ $$$$\mathrm{so}…

Two-triangles-1-and-2-are-given-such-that-length-of-sides-of-triangle-1-are-equail-to-length-of-medians-of-triangle-2-1-find-the-ratio-of-areas-of-triangles-2-given-that-small-side-of-1-

Question Number 67969 by behi83417@gmail.com last updated on 02/Sep/19 $$\boldsymbol{\mathrm{Two}}\:\boldsymbol{\mathrm{triangles}}\:\bigtriangleup_{\mathrm{1}} \:\boldsymbol{\mathrm{and}}\:\bigtriangleup_{\mathrm{2}} \:\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}},\boldsymbol{\mathrm{such}}\: \\ $$$$\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{sides}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{triangle}}\:\mathrm{1},\boldsymbol{\mathrm{are}}\: \\ $$$$\boldsymbol{\mathrm{equail}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{medians}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{triangle}}\:\mathrm{2}. \\ $$$$\mathrm{1}.\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ratio}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{areas}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{triangles}}. \\ $$$$\mathrm{2}.\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{small}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{\mathrm{of}}\:\bigtriangleup_{\mathrm{1}} ,\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{equail}}\:\boldsymbol{\mathrm{to}}:\sqrt{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{one}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{be}}:\mathrm{90}^{\bullet} . \\…

What-is-the-sum-of-digits-of-3333-4444-Say-sum-of-all-digits-of-3333-4444-is-A-If-A-gt-10-then-sum-all-digits-of-A-This-process-is-repeated-until-a-single-digits-sum-x-in-obtained-x-

Question Number 2432 by prakash jain last updated on 19/Nov/15 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{3333}^{\mathrm{4444}} , \\ $$$$\mathrm{Say}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{3333}^{\mathrm{4444}} \:\mathrm{is}\:\mathrm{A}, \\ $$$$\mathrm{If}\:\mathrm{A}>\mathrm{10}\:\mathrm{then}\:\mathrm{sum}\:\mathrm{all}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{A}. \\ $$$$\mathrm{This}\:\mathrm{process}\:\mathrm{is}\:\mathrm{repeated}\:\mathrm{until}\:\mathrm{a}\:\mathrm{single} \\ $$$$\mathrm{digits}\:\mathrm{sum}\:{x}\:\mathrm{in}\:\mathrm{obtained}. \\ $$$${x}=? \\ $$…

Question-67963

Question Number 67963 by mhmd last updated on 02/Sep/19 Commented by mathmax by abdo last updated on 02/Sep/19 $${generally}\:{if}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} {f}\left({t}\right){dt}\:\Rightarrow{F}^{'} \left({x}\right)={v}^{'} \left({x}\right){f}\left({v}\left({x}\right)\right)−{u}^{'} \left({x}\right){f}\left({u}\left({x}\right)\right) \\…

d-dx-tan-1-4x-1-4x-2-or-d-dx-tan-1-2tan-where-2x-sin-which-comes-later-if-done-considering-2x-sin-please-help-

Question Number 67960 by aseer imad last updated on 02/Sep/19 $$\frac{{d}}{{dx}}\left[{tan}^{−\mathrm{1}} \frac{\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}\right] \\ $$$${or} \\ $$$$\frac{{d}}{{dx}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{tan}\theta\right)\:\:\:\:\:\:\:\left[{where}\:\mathrm{2}{x}={sin}\theta\:\right] \\ $$$$\:\:\:{which}\:{comes}\:{later}\:{if}\:{done}\:{considering} \\ $$$$\mathrm{2}{x}={sin}\theta \\ $$$${please}\:{help} \\…

lim-x-2-7-log-x-256-1-3-49-2-2-x-1-4-

Question Number 67958 by hmamarques1994@gmai.com last updated on 02/Sep/19 $$\: \\ $$$$\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}} {\boldsymbol{\mathrm{lim}}}\left(\frac{\mathrm{7}^{\sqrt[{\mathrm{3}}]{\boldsymbol{\mathrm{log}}_{\boldsymbol{\mathrm{x}}} \left(\mathrm{256}\right)}} −\mathrm{49}}{\mathrm{2}^{−\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} }} −\frac{\mathrm{1}}{\mathrm{4}}}\right)\:\approx\:? \\ $$$$\: \\ $$ Terms of Service Privacy…

solve-without-using-l-hopital-and-series-lim-x-8-x-x-1-3-16-x-8-

Question Number 133494 by Eric002 last updated on 22/Feb/21 $${solve}\:{without}\:{using}\:{l}'{hopital}\:{and}\:{series}\: \\ $$$$\underset{{x}\rightarrow\mathrm{8}} {\mathrm{lim}}\frac{{x}\:\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}} \\ $$ Answered by Olaf last updated on 22/Feb/21 $$ \\ $$$$\mathrm{X}\:=\:\frac{{x}\sqrt[{\mathrm{3}}]{{x}}−\mathrm{16}}{{x}−\mathrm{8}}…