Question Number 67902 by ramirez105 last updated on 01/Sep/19 $${differential}\:{equation} \\ $$$${homogenous}. \\ $$$$ \\ $$$${please}\:{answer}\:{this}.{with}\:{p}.{s}. \\ $$$${xydx}+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$${x}=\mathrm{0} \\ $$$${y}=\mathrm{1} \\…
Question Number 2367 by Filup last updated on 18/Nov/15 $$\mathrm{What}\:\mathrm{exactly}\:\mathrm{does}\:{f}:\mathbb{C}\rightarrow\mathbb{C}\:\mathrm{mean}? \\ $$ Answered by RasheedAhmad last updated on 18/Nov/15 $${A}\:{function}\:\:{f}\:\:{whose}\:{domain}\:{and} \\ $$$${range}\:{both}\:{are}\:\mathbb{C}\:\left({set}\:{of}\:{complex}\right. \\ $$$$\left.{numbers}\right) \\…
Question Number 67903 by rajesh4661kumar@gmail.com last updated on 02/Sep/19 Answered by $@ty@m123 last updated on 02/Sep/19 $${Let}\:\sqrt{{x}}={y} \\ $$$$\mathrm{3}{y}^{\mathrm{2}} +\frac{\mathrm{2}}{{y}}=\mathrm{1} \\ $$$$\mathrm{3}{y}^{\mathrm{3}} +\mathrm{2}={y} \\ $$$$\mathrm{3}{y}^{\mathrm{3}}…
Question Number 67900 by ramirez105 last updated on 02/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$${please}\:{answer}. \\ $$$${y}\left({x}^{\mathrm{2}} +{xy}−\mathrm{2}{y}^{\mathrm{2}} \right){dx}+{x}\left(\mathrm{3}{y}^{\mathrm{2}} −{xy}−{x}^{\mathrm{2}} \right)\mathrm{2}{y}=\mathrm{0} \\ $$$$ \\ $$$${can}\:{someone}\:{answer}\:{this}?? \\ $$ Terms…
Question Number 133438 by 07711990888 last updated on 22/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133433 by greg_ed last updated on 22/Feb/21 $$\boldsymbol{\mathrm{hi}},\:\boldsymbol{\mathrm{everybody}}\:! \\ $$$$\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dx}}, \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\::\:\mathrm{2}\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dx}}. \\ $$ Answered by…
Question Number 67898 by ramirez105 last updated on 01/Sep/19 $$ \\ $$$${differential}\:{equation}. \\ $$$${homogenous}. \\ $$$$ \\ $$$${ydx}+\left(\mathrm{2}{x}+\mathrm{3}{y}\right){dy}=\mathrm{0} \\ $$$$ \\ $$ Terms of Service…
Question Number 133432 by Dwaipayan Shikari last updated on 22/Feb/21 $$\frac{{sin}\sqrt{\pi}}{\mathrm{1}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{4}\pi}}{\mathrm{2}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{9}\pi}}{\mathrm{3}^{\mathrm{3}} }+\frac{{sin}\sqrt{\mathrm{16}\pi}}{\mathrm{4}^{\mathrm{3}} }+….=\frac{\pi\sqrt{\pi}}{\mathrm{12}}\left(\mathrm{1}−\mathrm{3}\sqrt{\pi}+\mathrm{2}\pi\right) \\ $$ Answered by mindispower last updated on 24/Feb/21 $$\underset{{n}\geqslant\mathrm{0}}…
Question Number 67899 by ramirez105 last updated on 01/Sep/19 $${homogenous}\:{differential}\:{equation}. \\ $$$$ \\ $$$$\left(\mathrm{2}{xy}+{y}^{\mathrm{2}} \right){dr}−\mathrm{2}{x}^{\mathrm{2}} {dy}=\mathrm{0} \\ $$$${y}={e} \\ $$$${x}={e} \\ $$ Commented by AnJan_Math_Max…
Question Number 2362 by 123456 last updated on 18/Nov/15 $${f}:\mathbb{C}\rightarrow\mathbb{C},\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,{a}<{b} \\ $$$${f}\left({z}−{a}\right)={f}\left({b}−{z}\right)\mathrm{sin}\:\frac{{z}\pi}{{b}−{a}} \\ $$$${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\frac{{a}+{b}}{\mathrm{2}} \\ $$$${f}\left({z}\right)=\mathrm{0},{z}=? \\ $$ Commented by Rasheed Soomro last…