Question Number 2358 by 123456 last updated on 18/Nov/15 $${a}_{{n}+\mathrm{1}} =−\frac{{a}_{{n}} \left(\mid{a}_{{n}} \mid+\mathrm{1}\right)}{\mid{a}_{{n}} \mid},{a}_{\mathrm{1}} =\mathrm{1} \\ $$$${b}_{{n}+\mathrm{1}} ={b}_{{n}} +{a}_{{n}+\mathrm{1}} ,{b}_{\mathrm{1}} ={a}_{\mathrm{1}} \\ $$$${b}_{\mathrm{10}} =? \\…
Question Number 133431 by Algoritm last updated on 22/Feb/21 Answered by benjo_mathlover last updated on 22/Feb/21 $$\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{5xy}−\mathrm{y}=\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{1} \\ $$$$\left(\mathrm{y}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} −\left(\mathrm{5y}−\mathrm{3}\right)\mathrm{x}+\mathrm{1}−\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{5y}−\mathrm{3}\pm\sqrt{\left(\mathrm{5y}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{y}\right)}}{\mathrm{2}\left(\mathrm{y}−\mathrm{1}\right)}…
Question Number 2355 by 123456 last updated on 17/Nov/15 $$\frac{{df}}{{d}\zeta}\mathrm{sinh}\:\zeta+\frac{{df}}{{d}\theta}\mathrm{sin}\:\theta+\frac{{df}}{{d}\rho}\rho=\mathrm{0} \\ $$$${f}\left(\rho,\zeta,\theta\right)=?? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133424 by liberty last updated on 22/Feb/21 $$\mathrm{Given}\:\mathrm{10}\:\mathrm{white}\:\mathrm{balls}\:\mathrm{and}\:\mathrm{ten}\:\mathrm{black}\:\mathrm{balls} \\ $$$$\mathrm{numbered}\:\mathrm{1},\mathrm{2},…,\mathrm{10}.\:\mathrm{How}\:\mathrm{many}\: \\ $$$$\mathrm{ways}\:\mathrm{can}\:\mathrm{we}\:\mathrm{choose}\:\mathrm{6}\:\mathrm{balls}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{no}\:\mathrm{two}\:\mathrm{chosen}\:\mathrm{balls}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{number} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{two}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{chosen}\:\mathrm{balls}\:\mathrm{have} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{number}? \\ $$ Answered by EDWIN88…
Question Number 133426 by metamorfose last updated on 22/Feb/21 $$\int\lfloor{x}\rfloor{dx}=?… \\ $$ Answered by MJS_new last updated on 22/Feb/21 $$\mathrm{for}\:{a}<{b}:\:\underset{{a}} {\overset{{b}} {\int}}\lfloor{x}\rfloor{dx}=\lfloor{a}\rfloor\underset{{a}} {\overset{\lceil{a}\rceil} {\int}}{dx}+\underset{\lceil{a}\rceil} {\overset{\lfloor{b}\rfloor−\mathrm{1}}…
Question Number 133420 by liberty last updated on 22/Feb/21 $$\mathrm{Let}\:\mathrm{A}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{event}\:\mathrm{of}\:'\mathrm{test}\:\mathrm{positive}' \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{specific}\:\mathrm{experiment},\:\mathrm{and}\:\mathrm{B} \\ $$$$\mathrm{that}\:\mathrm{of}\:'\mathrm{have}\:\mathrm{cancer}'.\:\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that} \\ $$$$\mathrm{P}\left(\mathrm{B}\right)=\mathrm{0}.\mathrm{005}\:,\:\mathrm{P}\left(\mathrm{A}\mid\mathrm{B}\right)=\:\mathrm{0}.\mathrm{95}\:\mathrm{and}\:\mathrm{P}\left(\overset{−} {\mathrm{A}}\mid\overset{−} {\mathrm{B}}\right)=\:\mathrm{0}.\mathrm{95} \\ $$$$\mathrm{Suppose}\:\mathrm{someone}\:\mathrm{tests}\:\mathrm{positive}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{experiment}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that} \\ $$$$\mathrm{he}\:\mathrm{has}\:\mathrm{cancer}\:. \\…
Question Number 133423 by mathlove last updated on 22/Feb/21 Commented by liki last updated on 24/Feb/21 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}? \\ $$ Commented by MJS_new last updated on…
Question Number 133419 by liberty last updated on 22/Feb/21 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{set}\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{1989}\right\} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{the}\:\mathrm{disjoint} \\ $$$$\mathrm{union}\:\mathrm{of}\:\mathrm{A}_{\mathrm{1}} ,\mathrm{A}_{\mathrm{2}} ,…,\mathrm{A}_{\mathrm{117}} \:\mathrm{such}\:\mathrm{that} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{each}\:\mathrm{A}_{\mathrm{i}} \:\mathrm{contains}\:\mathrm{the}\:\mathrm{same}\:\mathrm{number}\:\mathrm{of}\:\mathrm{elements}\:,\mathrm{and} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{elements}\:\mathrm{of}\:\mathrm{each}\:\mathrm{A}_{\mathrm{i}} \:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{for}\:\mathrm{i}=\mathrm{1},\mathrm{2},\mathrm{3},…,\mathrm{m}…
Question Number 67881 by mr W last updated on 01/Sep/19 $${find}\:{all}\:{x},{y}\:\in{R}\:{such}\:{that} \\ $$$$\left({x}+{yi}\right)^{\mathrm{2019}} ={x}−{yi} \\ $$ Answered by mind is power last updated on 01/Sep/19…
Question Number 2344 by 123456 last updated on 17/Nov/15 $${f}\left({z}\right){e}^{\mathrm{1}−{z}} ={f}\left(\mathrm{1}−{z}\right)\pi^{{z}} \mathrm{sin}\:\left(\pi{z}\right) \\ $$$${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\mathrm{1}/\mathrm{2} \\ $$$${f}\left({z}\right)=\mathrm{0},{z}=?? \\ $$ Commented by Yozzi last updated on…