Question Number 132729 by mnjuly1970 last updated on 16/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:….{advanced}\:\:\:{calculus}… \\ $$$$\:\:\:\:{evaluate}\:: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−\mathrm{2}{x}} {ln}\left({x}\right){dx}=??? \\ $$$$ \\ $$ Answered by Olaf last…
Question Number 67193 by Rasheed.Sindhi last updated on 23/Aug/19 Commented by Rasheed.Sindhi last updated on 24/Aug/19 $$\:\underset{−} {\:\:\:\:\:\:\:\:\:\:\mathbb{S}\mathrm{ome}\:\mathbb{C}\mathrm{ounting}\:\mathbb{P}\mathrm{roblems}\:\:\:\:\:\:\:\:\:\:} \\ $$$$\left({a}\right){How}\:{many}\:{rectangles}\:{are}\:{in}\:{the} \\ $$$$\:\:\:\:\:\:\:{above}\:{picture}? \\ $$$$\left({b}\right){How}\:{many}\:{rectangles}\:{contain} \\…
Question Number 1656 by Rasheed Soomro last updated on 29/Aug/15 $$\mathrm{Let}\:\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{three}\:\mathrm{statments}.\: \\ $$$$\left(\mathrm{A}\Rightarrow\mathrm{B}\Rightarrow\mathrm{C}\Rightarrow\mathrm{A}\right)\:\overset{?} {\Rightarrow}\left(\mathrm{C}\Rightarrow\mathrm{B}\right)\: \\ $$$$\left(\mathrm{A}\Rightarrow\mathrm{B}\Rightarrow\mathrm{C}\Rightarrow\mathrm{A}\right)\:\overset{?} {\Rightarrow}\left(\mathrm{B}\Rightarrow\mathrm{A}\right)\: \\ $$$$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}. \\ $$ Commented by Yozzian last…
Question Number 132726 by 676597498 last updated on 16/Feb/21 $$\mathrm{use}\:\mathrm{error}\:\mathrm{fxn} \\ $$$$\mathrm{use}\:\mathrm{polar}\:\mathrm{coordinates}\:\mathrm{to}\:\mathrm{find} \\ $$$$\int\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67189 by mathmax by abdo last updated on 23/Aug/19 $${solve}\:{inside}\:{R}^{\mathrm{3}} \:{the}\:{system}\:\begin{cases}{\mathrm{2}{x}+{y}+{z}\:=\mathrm{1}}\\{{x}+\mathrm{2}{y}+{z}\:=\mathrm{2}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}+{y}+\mathrm{2}{z}\:=\mathrm{3}\right. \\ $$ Answered by MJS last updated on 23/Aug/19 $${D}=\begin{vmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}=\mathrm{4}…
Question Number 67187 by mathmax by abdo last updated on 23/Aug/19 $${let}\:{f}\left({x}\right)\:={arctan}\left({x}^{\mathrm{3}} \right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}^{\left({n}\right)} \left({x}\right){and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{3}} \right){dx} \\…
Question Number 1643 by 112358 last updated on 28/Aug/15 $${Calculate}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}} \left(\mathrm{1}−{t}\right)^{{b}} {dt} \\ $$$${given}\:{that}\:{I}\left({a},{b}\right)=\frac{{b}}{{a}+\mathrm{1}}{I}\left({a}+\mathrm{1},{b}−\mathrm{1}\right) \\ $$$$\left({a}>\mathrm{0},{b}>\mathrm{0}\right).\:{Use}\:{the}\:{fact}\:{that} \\ $$$${I}\left({a},{b}\right)={I}\left({a}+\mathrm{1},{b}\right)+{I}\left({a},{b}+\mathrm{1}\right) \\ $$$${and}\:{I}\left({a},{b}\right)={I}\left({b},{a}\right)\: \\…
Question Number 132712 by syamilkamil1 last updated on 16/Feb/21 Answered by mr W last updated on 16/Feb/21 Commented by syamilkamil1 last updated on 16/Feb/21 $${how}\:{you}\:{get}\:\mathrm{60}\:{sir}?…
Question Number 132715 by Dwaipayan Shikari last updated on 16/Feb/21 $$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{8}^{\mathrm{3}} }+… \\ $$ Answered by Olaf last updated on…
Question Number 132708 by frc2crc last updated on 16/Feb/21 $$\int_{−\infty} ^{\infty} \frac{{x}^{\mathrm{2}} \mathrm{cos}\:\left({px}+{q}\right)}{{x}^{\mathrm{2}} +\left({p}+{q}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by Olaf last updated on 16/Feb/21 $$…