Menu Close

Author: Tinku Tara

sin-2x-pi-4-sin-2x-pi-3-0-x-

Question Number 132347 by Study last updated on 13/Feb/21 $${sin}\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{4}}\right)−{sin}\left(\mathrm{2}{x}+\frac{\pi}{\mathrm{3}}\right)=\mathrm{0}\:\:\:{x}=? \\ $$ Answered by EDWIN88 last updated on 13/Feb/21 $$\mathrm{sin}\:\mathrm{X}−\mathrm{sin}\:\mathrm{Y}\:=\:\mathrm{2cos}\:\left(\frac{\mathrm{X}+\mathrm{Y}}{\mathrm{2}}\right)\mathrm{sin}\:\:\left(\frac{\mathrm{X}−\mathrm{Y}}{\mathrm{2}}\right) \\ $$$$\mathrm{where}\:\begin{cases}{\mathrm{X}=\mathrm{2x}+\frac{\pi}{\mathrm{4}}}\\{\mathrm{Y}=\mathrm{2x}+\frac{\pi}{\mathrm{3}}}\end{cases} \\ $$$$\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{3}}\right)=\mathrm{0} \\…

Prove-that-AM-gt-HM-

Question Number 1268 by 314159 last updated on 18/Jul/15 $$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{AM}}\:>\:\boldsymbol{\mathrm{HM}}. \\ $$ Answered by prakash jain last updated on 18/Jul/15 $$\mathrm{AM}=\frac{{a}+{b}}{\mathrm{2}},\:\mathrm{HM}=\frac{\mathrm{2}{ab}}{{a}+{b}} \\ $$$$\mathrm{AM}−\mathrm{HM}=\frac{{a}+{b}}{\mathrm{2}}−\frac{\mathrm{2}{ab}}{{a}+{b}}=\:\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{2}\left({a}+{b}\right)} \\…

Question-132337

Question Number 132337 by I want to learn more last updated on 13/Feb/21 Answered by physicstutes last updated on 14/Feb/21 $$\mathrm{First}\:\mathrm{we}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{limiting}\:\mathrm{reagent}: \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{BaCl}_{\mathrm{2}} \:=\:\mathrm{40}.\mathrm{8}\:\mathrm{g} \\…

given-that-f-x-3x-3-2x-2-5x-7-find-a-b-c-2-2-2-d-3-3-3-any-solutions-directly-

Question Number 66802 by Rio Michael last updated on 19/Aug/19 $${given}\:{that}\: \\ $$$${f}\left({x}\right)\:=\:\mathrm{3}{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{7}\:\:{find} \\ $$$$\left.{a}\right)\:\:\alpha\:+\:\beta\:+\:\gamma \\ $$$$\left.{b}\right)\:\alpha\beta\gamma\:\: \\ $$$$\left.{c}\right)\:\alpha^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:+\:\gamma^{\mathrm{2}} \\ $$$$\left.{d}\right)\:\alpha^{\mathrm{3}}…

prove-that-r-k-n-r-1-2-n-n-1-show-with-a-diagram-that-the-volume-of-a-parallepipe-is-a-b-c-

Question Number 66803 by Rio Michael last updated on 19/Aug/19 $$\:{prove}\:{that} \\ $$$$\underset{{r}={k}} {\overset{{n}} {\sum}}\:{r}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right) \\ $$$$ \\ $$$${show}\:{with}\:{a}\:{diagram}\:{that}\:{the}\:{volume}\:{of}\:{a}\:{parallepipe}\:{is}\:\:\:{a}.\left({b}×{c}\right) \\ $$ Commented by JDamian last…

calculate-U-n-1-n-n-arctan-x-1-x-2-dx-and-determine-lim-n-U-n-2-find-nature-of-U-n-

Question Number 66800 by mathmax by abdo last updated on 19/Aug/19 $${calculate}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{{n}} \:\:\:\frac{{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${and}\:{determine}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Commented by…

let-f-x-0-2-x-t-2-dt-with-x-0-1-calculate-f-x-2-calculate-g-x-0-2-dt-x-t-2-3-find-the-value-of-0-2-4-t-2-dt-and-0-2-dt-3-t-2-4-give-g-x-at-form-of-i

Question Number 66801 by mathmax by abdo last updated on 19/Aug/19 $${let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{{x}+{t}^{\mathrm{2}} }{dt}\:\:\:{with}\:{x}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){calculate}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{dt}}{\:\sqrt{{x}+{t}^{\mathrm{2}} }} \\ $$$$\left.\mathrm{3}\right){find}\:{the}\:{value}\left[{of}\:\int_{\mathrm{0}} ^{\mathrm{2}}…

very-nice-integral-4x-3-4x-2-4x-3-x-2-1-x-2-x-1-2-dx-

Question Number 132333 by liberty last updated on 13/Feb/21 $$\:\mathrm{very}\:\mathrm{nice}\:\mathrm{integral} \\ $$$$\int\:\frac{\mathrm{4x}^{\mathrm{3}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{dx}? \\ $$$$ \\ $$ Answered by EDWIN88 last…