Question Number 131994 by liberty last updated on 10/Feb/21 Commented by liberty last updated on 10/Feb/21 $$\mathrm{old}\:\mathrm{unswered} \\ $$ Answered by EDWIN88 last updated on…
30-you-can-use-this-numbers-1-3-5-7-9-11-13-15-you-also-use-a-number-double-only-genius-is-solve-it-
Question Number 919 by sai dinesh last updated on 24/Apr/15 $$−+−+−=\mathrm{30} \\ $$$${you}\:{can}\:{use}\:{this}\:{numbers}\left(\mathrm{1},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{9},\mathrm{11},\mathrm{13},\mathrm{15}\right) \\ $$$${you}\:{also}\:{use}\:{a}\:{number}\:{double} \\ $$$${only}\:{genius}\:{is}\:{solve}\:{it} \\ $$$$ \\ $$ Answered by prakash jain…
Question Number 131991 by mnjuly1970 last updated on 10/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:\:{calculus}…\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\phi_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} {li}_{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{4} \\ $$$$\:\:\:\:\phi_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{log}\left(\mathrm{1}−{t}\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}}…
Question Number 915 by 112358 last updated on 24/Apr/15 $${Show}\:{that}\:\forall{t}\geqslant\mathrm{0}\:,\:{x}\leqslant\mathrm{1}\:{where} \\ $$$${x}=\frac{{e}^{−{t}} }{\mathrm{2}}\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{2}\right)\:\:,\:{t}\in\mathbb{R}.\: \\ $$ Commented by 123456 last updated on 24/Apr/15 $${t}\geqslant\mathrm{0}\Leftrightarrow−{t}\leqslant\mathrm{0}\Leftrightarrow{e}^{−{t}} \leqslant{e}^{\mathrm{0}}…
Question Number 66446 by ~ À ® @ 237 ~ last updated on 15/Aug/19 $$\:\:{Find}\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\left(\frac{\mathrm{1}}{{E}\left({x}\right)}\:−\frac{\mathrm{1}}{{x}}\right){dx} \\ $$ Commented by mathmax by abdo last…
Question Number 911 by 112358 last updated on 22/Apr/15 $${Eight}\:{people}\:{are}\:{seated}\:{around} \\ $$$${a}\:{circular}\:{table}.\:{Each}\:{person} \\ $$$${must}\:{shake}\:{everyone}'{s}\:{hand}\:{but} \\ $$$${they}\:{must}\:{not}\:{shake}\:{hands}\:{with} \\ $$$${the}\:{two}\:{persons}\:{seated}\:{at}\:{their}\:{sides}. \\ $$$${How}\:{many}\:{handshakes}\:{occur}? \\ $$ Answered by prakash…
Question Number 66444 by ~ À ® @ 237 ~ last updated on 15/Aug/19 $$\:{calculate}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left({x}!\right)^{\frac{\mathrm{1}}{{x}}} \:\:\:\:\:\:\:{if}\:\:\:\:\:{x}!=\Pi\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}} \:{e}^{−{t}} {dt} \\ $$ Commented by…
Question Number 908 by 112358 last updated on 20/Apr/15 $${Show}\:{that}\:{for}\:{the}\:{system}\:{of}\: \\ $$$${equations} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}+{y}+{z}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}+\mathrm{3}{y}+\mathrm{3}{z}=\mathrm{9} \\ $$$${the}\:{general}\:{solution}\:{is}\:{given}\:{by} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\lambda+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}=\mu+\mathrm{1} \\…
Question Number 907 by Yugi last updated on 19/Apr/15 $${Determine}\:{the}\:{results}\:{of}\:{the}\:{following}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}_{\mathrm{1}} =\int\sqrt{\frac{{a}+{e}^{{x}} }{{a}−{e}^{{x}} }}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}_{\mathrm{2}} =\int\frac{\left({tanx}\right)\mid{tanx}\mid}{\mathrm{1}−{tan}^{\mathrm{2}} {x}}{dx} \\ $$ Commented by prakash jain…
Question Number 66439 by Rio Michael last updated on 15/Aug/19 $${for}\:{a}\:{geometric}\:{series}. \\ $$$${can}\:{the}\:{sun}\:{to}\:{infinty}\:{use}\:{the}\:{two}\:{formulas} \\ $$$${S}_{\infty} =\:\frac{{a}}{\mathrm{1}−{r}}\:\:\mid{r}\mid\:\:<\mathrm{1}\:\:{and}\:{S}_{\infty} \:=\:\frac{{a}}{{r}−\mathrm{1}}\:\mid{r}\mid\:>\:\mathrm{1}\:??\:{please}\:{i}\:{am}\:{getting}\:{confused}\:{on}\:{this}. \\ $$ Commented by JDamian last updated on…