Menu Close

Author: Tinku Tara

let-f-n-x-1-1-x-n-1-1-n-defined-on-0-1-1-prove-that-f-n-cs-to-a-function-f-on-0-1-2-calculate-I-n-0-1-f-n-x-dx-

Question Number 66344 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{{n}} \right)^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} }\:\:\:{defined}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:{f}_{{n}} \rightarrow^{{cs}} \:\:{to}\:{a}\:{function}\:{f}\:{on}\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({x}\right){dx}…

lim-x-0-x-x-x-1-1-4-1-

Question Number 131882 by Eric002 last updated on 09/Feb/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}}{{x}+\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}−\mathrm{1}} \\ $$ Answered by liberty last updated on 09/Feb/21 $$\:\mathrm{L}'\mathrm{H}\ddot {\mathrm{o}pital}\:\mathrm{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}\:\sqrt[{\mathrm{4}}]{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }}}\:\right]=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}}=\:\frac{\mathrm{4}}{\mathrm{5}} \\…

if-the-equations-of-the-sides-of-the-triangle-are-7x-y-10-0-x-2y-5-0-and-x-y-2-0-find-the-orhocentre-of-the-triangle-

Question Number 808 by sai dinesh last updated on 16/Mar/15 $${if}\:{the}\:{equations}\:{of}\:{the}\:{sides}\:{of}\:{the}\:{triangle}\:{are}\:\mathrm{7}{x}+{y}−\mathrm{10}=\mathrm{0},{x}−\mathrm{2}{y}+\mathrm{5}=\mathrm{0}\:{and}\:{x}+{y}+\mathrm{2}=\mathrm{0},\:{find}\:{the}\:{orhocentre}\:{of}\:{the}\:{triangle} \\ $$ Commented by prakash jain last updated on 16/Mar/15 $${if}\:{the}\:{equations}\:{of}\:{the}\:{sides}\:{of}\:{the}\:{triangle}\:{are}\: \\ $$$$\mathrm{7}{x}+{y}−\mathrm{10}=\mathrm{0},{x}−\mathrm{2}{y}+\mathrm{5}=\mathrm{0}\:{and}\:{x}+{y}+\mathrm{2}=\mathrm{0}, \\…

n-1-1-n-e-2pin-1-

Question Number 131877 by Dwaipayan Shikari last updated on 09/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({e}^{\mathrm{2}\pi{n}} −\mathrm{1}\right)} \\ $$ Commented by Dwaipayan Shikari last updated on 09/Feb/21 $${I}\:{have}\:{found}\:…

if-p-x-is-a-polynomial-and-p-x-p-1-x-p-x-p-1-x-p-3-28-then-p-x-p-4-

Question Number 806 by 123456 last updated on 16/Mar/15 $${if}\:{p}\left({x}\right)\:{is}\:{a}\:{polynomial}\:{and} \\ $$$${p}\left({x}\right){p}\left(\frac{\mathrm{1}}{{x}}\right)={p}\left({x}\right)+{p}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$${p}\left(\mathrm{3}\right)=\mathrm{28} \\ $$$${then} \\ $$$${p}\left({x}\right)=? \\ $$$${p}\left(\mathrm{4}\right)=? \\ $$ Commented by 123456…

prove-that-sin-npi-0-if-n-Z-

Question Number 131879 by Study last updated on 09/Feb/21 $${prove}\:{that}\:{sin}\left({n}\pi\right)=\mathrm{0}\:\:\:{if}\:\:\:\:{n}\in\mathbb{Z} \\ $$ Answered by physicstutes last updated on 10/Feb/21 $$\mathrm{prove}\:\mathrm{for}\:{n}\:=\:\mathrm{1} \\ $$$$\mathrm{sin}\:\pi\:=\:\mathrm{0} \\ $$$$\mathrm{assume}\:\mathrm{for}\:{n}=\:{k}\:,\:{k}\:\in\mathbb{Z} \\…