Menu Close

Author: Tinku Tara

what-is-the-magnitude-and-direction-in-degree-of-this-vector-F-3-10-6-i-13-35-10-6-j-a-282-5-0-b-78-5-0-c-82-5-0-d-78-5-0-e-282-5-0-

Question Number 131860 by aurpeyz last updated on 09/Feb/21 $${what}\:{is}\:{the}\:{magnitude}\:{and}\:\: \\ $$$${direction}\left({in}\:{degree}\right)\:{of}\:{this}\:{vector}? \\ $$$${F}=−\mathrm{3}×\mathrm{10}^{−\mathrm{6}} {i}−\mathrm{13}.\mathrm{35}×\mathrm{10}^{−\mathrm{6}} {j} \\ $$$$\left({a}\right)\:\mathrm{282}.\mathrm{5}^{\mathrm{0}} \:\left({b}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \:\left({c}\right)\:\mathrm{82}.\mathrm{5}^{\mathrm{0}} \:\left({d}\right)\mathrm{78}.\mathrm{5}^{\mathrm{0}} \\ $$$$\left({e}\right)\mathrm{282}.\mathrm{5}^{\mathrm{0}} \\ $$…

0-1-x-x-2-x-x-2-x-2-y-2-dydx-B-x-2-y-2-dxdy-B-x-y-R-2-y-x-x-2-x-2-y-2-x-0-B-2-d-d-B-

Question Number 789 by 123456 last updated on 14/Mar/15 $$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{x}−{x}^{\mathrm{2}} } {\overset{\sqrt{{x}−{x}^{\mathrm{2}} }} {\int}}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dydx}=? \\ $$$$\int\underset{\mathrm{B}} {\int}\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dxdy}\:\:\:\:\:\mathrm{B}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} :{y}\geqslant{x}−{x}^{\mathrm{2}} \wedge{x}^{\mathrm{2}}…

let-f-x-cosx-1-x-1-prove-that-f-x-1-x-2-x-2-8-x-0-2-ptove-that-f-x-2-pi-e-1-x-1-ln-cosx-x-pi-2-

Question Number 66322 by mathmax by abdo last updated on 12/Aug/19 $${let}\:{f}\left({x}\right)=\left({cosx}\right)^{\frac{\mathrm{1}}{{x}}} \:\left(\:\mathrm{1}\right)\:\:{prove}\:{that}\:{f}\left({x}\right)\sim\mathrm{1}−\frac{{x}}{\mathrm{2}}+\frac{{x}^{\mathrm{2}} }{\mathrm{8}}\:\:\left(\:{x}\rightarrow\mathrm{0}\right) \\ $$$$\left(\mathrm{2}\right){ptove}\:{that}\:{f}^{'} \left({x}\right)\sim−\frac{\mathrm{2}}{\pi}\:{e}^{\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right){ln}\left({cosx}\right)} \:\:\left({x}\rightarrow\frac{\pi}{\mathrm{2}}\right) \\ $$ Terms of Service Privacy Policy…

r-1-0-pi-2-5-2-2-x-2r-dx-

Question Number 787 by 123456 last updated on 22/Mar/15 $$\underset{{r}=\mathrm{1}} {\overset{+\infty} {\sum}}\sqrt{\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{5}+\Gamma\left(\frac{\mathrm{2}}{\mathrm{2}+{x}^{\mathrm{2}{r}} }\right){dx}} \\ $$ Commented by 123456 last updated on 13/Mar/15 $$\underset{{r}=\mathrm{1}}…

Prove-that-if-two-numbers-are-chosen-at-random-then-the-probability-that-their-sum-is-divisible-by-n-is-1-n-

Question Number 785 by rishabh last updated on 12/Mar/15 $${Prove}\:{that}\:{if}\:{two}\:{numbers}\:{are}\:{chosen} \\ $$$${at}\:{random}\:{then}\:{the}\:{probability}\:{that} \\ $$$${their}\:{sum}\:{is}\:{divisible}\:{by}\:{n}\:{is}\:\frac{\mathrm{1}}{{n}}. \\ $$ Answered by prakash jain last updated on 12/Mar/15 $$\mathrm{Sum}\:\mathrm{mod}\:{n}={k},\:\mathrm{where}\:\mathrm{0}\leqslant{k}\leqslant{n}−\mathrm{1}.…