Menu Close

Author: Tinku Tara

x-y-z-R-a-b-c-gt-0-prove-that-x-2-a-y-2-b-z-2-c-x-y-z-2-a-b-c-

Question Number 201615 by hardmath last updated on 09/Dec/23 $$\mathrm{x},\mathrm{y},\mathrm{z}\:\in\:\mathbb{R} \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{c}}\:\geqslant\:\frac{\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} }{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$ Answered by AST…

Question-201573

Question Number 201573 by sonukgindia last updated on 09/Dec/23 Answered by witcher3 last updated on 09/Dec/23 $$=\int_{−\infty} ^{\infty} \frac{\mathrm{e}^{−\mathrm{2024x}} +\mathrm{e}^{−\mathrm{2020}} }{\left(\mathrm{e}^{−\mathrm{2025x}} +\mathrm{e}^{−\mathrm{2019x}} \right)\left(\left(−\mathrm{4x}^{\mathrm{3}} +\left(\mathrm{4x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…

5-555-5-50-find-the-sum-of-the-digits-of-the-product-

Question Number 201557 by hardmath last updated on 08/Dec/23 $$\mathrm{5}\:\centerdot\:\underset{\:\mathrm{50}} {\underbrace{\mathrm{555}…\mathrm{5}}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{product}. \\ $$ Answered by aleks041103 last updated on 09/Dec/23 $$\mathrm{5}.\mathrm{5}=\mathrm{25}…

Question-201526

Question Number 201526 by 281981 last updated on 08/Dec/23 Answered by AST last updated on 08/Dec/23 $${WLOG},{let}\:{O}\:{be}\:{the}\:{origin};\:{g}=\frac{{a}+{b}+{c}}{\mathrm{3}} \\ $$$$\mid{o}−{a}\mid=\mid{o}−{b}\mid=\mid{o}−{c}\mid={R} \\ $$$$\Rightarrow\left({o}−{a}\right)\left(\overset{−} {{o}}−\overset{−} {{a}}\right)={R}^{\mathrm{2}} \Rightarrow{a}\overset{−} {{a}}={R}^{\mathrm{2}}…

Question-201527

Question Number 201527 by cortano12 last updated on 08/Dec/23 Answered by AST last updated on 08/Dec/23 $$#\left(\mathrm{6}\:{or}\:\mathrm{8}\right)=#\left(\mathrm{6}\right)+#\left(\mathrm{8}\right)−#\left(\mathrm{6}{n}\mathrm{8}\right) \\ $$$$#\left(\mathrm{6}\right)=\lfloor\frac{\mathrm{2000}}{\mathrm{6}}\rfloor=\mathrm{333};#\left(\mathrm{8}\right)=\lfloor\frac{\mathrm{2000}}{\mathrm{8}}\rfloor=\mathrm{250} \\ $$$$#\left(\mathrm{6}{n}\mathrm{8}\right)=#\left(\mathrm{24}\right)=\lfloor\frac{\mathrm{2000}}{\mathrm{24}}\rfloor=\mathrm{83} \\ $$$$\Rightarrow#\left(\mathrm{6}\:{or}\:\mathrm{8}\right)=\mathrm{500} \\ $$$$\Rightarrow{Probability}=\frac{\mathrm{2000}−\mathrm{500}}{\mathrm{2000}}=\frac{\mathrm{3}}{\mathrm{4}}…

Question-201553

Question Number 201553 by Calculusboy last updated on 08/Dec/23 Answered by som(math1967) last updated on 09/Dec/23 $$\mathrm{1}.\:\int\frac{\mathrm{1}+{logx}−\mathrm{1}}{\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int\frac{{dx}}{\left(\mathrm{1}+{logx}\right)}\:−\int\frac{{dx}}{\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}+{logx}}\int{dx}−\int\left\{\frac{{d}}{{dx}}×\frac{\mathrm{1}}{\mathrm{1}+{logx}}\int{dx}\right\}{dx} \\ $$$$\:\:\:\:\:\:−\int\frac{{dx}}{\left(\mathrm{1}+{logx}\right)^{\mathrm{2}}…

Question-201555

Question Number 201555 by Simurdiera last updated on 08/Dec/23 Answered by mr W last updated on 09/Dec/23 $${let}\:{u}={x}+{y} \\ $$$$\frac{{du}}{{dx}}=\mathrm{1}+\frac{{dy}}{{dx}}\:\Rightarrow\frac{{dy}}{{dx}}=\frac{{du}}{{dx}}−\mathrm{1} \\ $$$$\Rightarrow\sqrt{{u}+\mathrm{1}}\left(\frac{{du}}{{dx}}−\mathrm{1}\right)=\sqrt{{u}−\mathrm{1}} \\ $$$$\Rightarrow\frac{{du}}{{dx}}=\frac{\sqrt{{u}−\mathrm{1}}}{\:\sqrt{{u}+\mathrm{1}}}+\mathrm{1} \\…