Question Number 201184 by Calculusboy last updated on 01/Dec/23 Answered by Sutrisno last updated on 01/Dec/23 $${misal}\::\:\:\sqrt{\mathrm{2}{x}}+\mathrm{4}={u}\rightarrow{dx}=\sqrt{\mathrm{2}{x}}{du} \\ $$$$=\int\frac{\sqrt{\mathrm{2}{x}}}{{u}}.\sqrt{\mathrm{2}{x}}{du} \\ $$$$=\int\frac{\left({u}−\mathrm{4}\right)^{\mathrm{2}} }{{u}}{du} \\ $$$$=\int\frac{{u}^{\mathrm{2}} −\mathrm{8}{u}+\mathrm{16}}{{u}}{du}…
Question Number 201152 by mathlove last updated on 01/Dec/23 $${if}\:\:\mathrm{4}^{{x}} +\mathrm{4}^{−{x}} =\mathrm{7} \\ $$$${then}\:\:\:\mathrm{8}^{{x}} +\mathrm{8}^{−{x}} =? \\ $$ Answered by BaliramKumar last updated on 01/Dec/23…
Question Number 201185 by Calculusboy last updated on 01/Dec/23 Answered by witcher3 last updated on 02/Dec/23 $$\mathrm{non}\:\mathrm{close}\:\mathrm{formes} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 201149 by Mingma last updated on 30/Nov/23 Answered by witcher3 last updated on 03/Dec/23 $$\mathrm{x}=\mathrm{n}\in\mathbb{N}\:\mathrm{y}=\frac{\mathrm{1}}{\mathrm{n}},\mathrm{z}=\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\geqslant\mathrm{2} \\ $$$$\forall\mathrm{n}\in\mathbb{N}−\left\{\mathrm{0},\mathrm{1}\right\}\:\:\left(\mathrm{n},\frac{\mathrm{1}}{\mathrm{n}},\frac{\mathrm{1}}{\mathrm{n}}\right)\mathrm{is}\:\mathrm{solution} \\ $$$$ \\ $$ Terms of…
Question Number 201150 by Mingma last updated on 30/Nov/23 Answered by mr W last updated on 02/Dec/23 $${a}={side}\:{length}\:{of}\:{square} \\ $$$$\left(\frac{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{15}^{\mathrm{2}} }{\mathrm{2}{ax}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} +{x}^{\mathrm{2}}…
Question Number 201144 by sts313 last updated on 30/Nov/23 $$\left(\frac{\mathrm{14}}{\mathrm{15}}\right)^{\mathrm{6}} ×\left(\frac{\mathrm{45}}{\mathrm{28}}\right)^{\mathrm{6}} = \\ $$ Answered by mathlove last updated on 01/Dec/23 $$\left(\frac{\mathrm{14}}{\mathrm{15}}\right)^{\mathrm{6}} ×\left(\frac{\mathrm{3}×\mathrm{15}}{\mathrm{2}×\mathrm{14}}\right)^{\mathrm{6}} =\frac{\cancel{\mathrm{14}^{\mathrm{6}} }}{\cancel{\mathrm{15}^{\mathrm{6}}…
Question Number 201146 by ajfour last updated on 30/Nov/23 Commented by ajfour last updated on 30/Nov/23 $${How}\:{far}\:{is}\:{J}\:{from}\:{center}\:{of}\:{circle}? \\ $$ Commented by mr W last updated…
Question Number 201140 by Calculusboy last updated on 30/Nov/23 $$\boldsymbol{{If}}\:\underset{−} {\boldsymbol{{R}}}=\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}\underset{−} {\boldsymbol{{i}}}−\mathrm{2}\boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}\underset{−} {\boldsymbol{{j}}}+\boldsymbol{{xy}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \underset{−} {\boldsymbol{{k}}},\:\boldsymbol{{find}}\:\mid\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dx}}^{\mathrm{2}} }×\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{R}}}{\boldsymbol{{dy}}^{\mathrm{2}} }\mid\:\: \\ $$$$\boldsymbol{{at}}\:\boldsymbol{{the}}\:\boldsymbol{{point}}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right) \\…
Question Number 201139 by cherokeesay last updated on 30/Nov/23 Commented by Frix last updated on 30/Nov/23 $${x}\approx\mathrm{6395}.\mathrm{12283}\wedge{y}\approx\mathrm{171}.\mathrm{458282} \\ $$$$\mathrm{Exact}\:\mathrm{solution}: \\ $$$${x}=\mathrm{32}\left(\mathrm{8}\left(\mathrm{5}{r}^{\mathrm{2}} +\mathrm{6}{r}+\mathrm{9}\right)\sqrt{{r}−\mathrm{1}}+\mathrm{16}{r}^{\mathrm{2}} +\mathrm{29}{r}+\mathrm{38}\right) \\ $$$${y}=\mathrm{16}\left(\mathrm{4}\left({r}^{\mathrm{2}}…
Question Number 201133 by mnjuly1970 last updated on 30/Nov/23 $$ \\ $$$$ \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{1}} ^{\:\mathrm{3}} \frac{\:\mathrm{1}}{\:\sqrt{\left({x}−\mathrm{1}\:\right)^{\mathrm{3}} }\:+\:\sqrt{\left({x}+\mathrm{1}\:\right)^{\mathrm{3}} }}\:{dx}=\:?\:\:\: \\ $$$$ \\ $$ Commented by Frix…