Menu Close

Author: Tinku Tara

Question-223101

Question Number 223101 by Jubr last updated on 14/Jul/25 Commented by Tawa11 last updated on 15/Jul/25 $$?\:\:=\:\:\frac{\mathrm{16}}{\mathrm{25}}\left(?\:\:+\:\:\mathrm{76}.\mathrm{5}\right) \\ $$$$\therefore\:\:\:\:?\:\:\:=\:\:\:\mathrm{136}\:\mathrm{cm}^{\mathrm{2}} \\ $$ Commented by mr W…

1-3-1-3-x-4-1-x-4-cos-1-2-1-x-2-dx-

Question Number 223096 by fantastic last updated on 14/Jul/25 $$\underset{−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} {\overset{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} {\int}}\:\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{4}} }\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} }\right){dx}=? \\ $$ Answered by MathematicalUser2357 last updated on 22/Jul/25…

0-x-2-cosh-x-2-2-dx-

Question Number 223090 by MrGaster last updated on 14/Jul/25 $$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{\left(\mathrm{cosh}\left({x}^{\mathrm{2}} \right)\right)^{\mathrm{2}} }\mathrm{d}{x} \\ $$ Commented by Tawa11 last updated on 18/Jul/25 $$\mathrm{I}\:\mathrm{got}:\:\:\:\:\:\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\eta\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:\:\:\mathrm{where}\:\:\eta\:\:\mathrm{is}\:\:'\mathrm{Eta}'\:\:\mathrm{function}.…

Question-223085

Question Number 223085 by wewji12 last updated on 14/Jul/25 Answered by wewji12 last updated on 14/Jul/25 $$\mathrm{if}\:\mathrm{sequence}\:{A}_{{n}} \:\mathrm{is}\:\mathrm{monotonic}\:\mathrm{decrease}.\: \\ $$$$\bullet\:\:{A}_{{n}} \:\mathrm{satisfie}\:{A}_{\mathrm{0}} \geq{A}_{\mathrm{1}} \geq….\geq{A}_{{n}} \\ $$$$\bullet\:\:\underset{{n}\rightarrow\infty}…

if-lim-x-x-f-x-and-lim-x-x-f-x-can-we-determine-lim-x-x-f-x-x-f-x-

Question Number 223082 by DarthMath last updated on 14/Jul/25 $${if}\:\underset{{x}\rightarrow+\infty} {{lim}x}−{f}\left({x}\right)=+\infty\:{and}\:\underset{{x}\rightarrow+\infty} {{lim}x}+{f}\left({x}\right)=+\infty \\ $$$${can}\:{we}\:{determine}\:\underset{{x}\rightarrow+\infty} {{lim}}\frac{{x}−{f}\left({x}\right)}{{x}+{f}\left({x}\right)} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…