Menu Close

Author: Tinku Tara

Determiner-r-et-R-voir-figure-Sachant-aue-C-120-AB-12-

Question Number 200761 by a.lgnaoui last updated on 23/Nov/23 $$\boldsymbol{\mathrm{Determiner}}\:\:\boldsymbol{\mathrm{r}}\:\:\mathrm{et}\:\:\boldsymbol{\mathrm{R}}\:\:\left({voir}\:{figure}\:\right) \\ $$$$\:\mathrm{Sachant}\:\mathrm{aue}:\measuredangle\boldsymbol{\mathrm{C}}=\mathrm{120}\:\::\boldsymbol{{AB}}=\mathrm{12} \\ $$ Commented by a.lgnaoui last updated on 23/Nov/23 Commented by mr W…

lim-x-sin1-1-x-2-1-cosx-

Question Number 200795 by mathlove last updated on 23/Nov/23 $$\underset{{x}\rightarrow{sin}\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{cosx}}=? \\ $$ Answered by witcher3 last updated on 23/Nov/23 $$\mathrm{x}\rightarrow\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{cos}\left(\mathrm{x}\right)}\:\mathrm{is}\:\:\mathrm{defined}\:\mathrm{in}\:\mathrm{sin}\left(\mathrm{1}\right) \\ $$$$…

sinx-cosx-tgx-x-

Question Number 200788 by hardmath last updated on 23/Nov/23 $$\mathrm{sin}\boldsymbol{\mathrm{x}}\:\:\:+\:\:\:\mathrm{cos}\boldsymbol{\mathrm{x}}\:\:\:=\:\:\:\mathrm{tg}\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{x}\:=\:? \\ $$ Answered by Frix last updated on 23/Nov/23 $${x}=\mathrm{2tan}^{−\mathrm{1}} \:{t}\:\mathrm{leads}\:\mathrm{to} \\ $$$${t}^{\mathrm{4}}…

Question-200785

Question Number 200785 by cortano12 last updated on 23/Nov/23 Answered by som(math1967) last updated on 24/Nov/23 $$\:\frac{{AB}}{{sin}\mathrm{105}}=\frac{{AT}}{{sin}\mathrm{45}} \\ $$$$\Rightarrow{AB}=\mathrm{24}×{sin}\mathrm{75}×\sqrt{\mathrm{2}} \\ $$$$\:\measuredangle{ATC}=\measuredangle{ACT}=\mathrm{75} \\ $$$$\therefore{AT}={AC}=\mathrm{24}{cm} \\ $$$$\bigtriangleup{ABC}=\frac{\mathrm{1}}{\mathrm{2}}×{AB}×{AC}×{sin}\mathrm{60}…

Question-200778

Question Number 200778 by sonukgindia last updated on 23/Nov/23 Answered by MM42 last updated on 23/Nov/23 $${if}\:\:{n}=\mathrm{1}\Rightarrow\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\left.={tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{2}}\:…