Menu Close

Author: Tinku Tara

Question-200471

Question Number 200471 by Mingma last updated on 19/Nov/23 Answered by AST last updated on 19/Nov/23 $$\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}×\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}\Rightarrow\frac{{CB}_{\mathrm{1}} }{{B}_{\mathrm{1}} {A}}=\mathrm{8} \\ $$$$\frac{\left[{CAB}\right]}{\left[{ADB}\right]}=\frac{{CC}_{\mathrm{1}} }{{DC}_{\mathrm{1}} }=\frac{{CD}}{{DC}_{\mathrm{1}}…

0-pi-2-dx-1-tan-2023-x-

Question Number 200464 by Frix last updated on 19/Nov/23 $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{dx}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2023}} \:{x}}=??????? \\ $$ Answered by som(math1967) last updated on 19/Nov/23 $$\:{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{cos}^{\mathrm{2023}}…

Find-the-sum-of-the-fifth-powers-of-the-roots-of-x-3-2x-2-x-1-0-by-applying-synthetic-division-

Question Number 200465 by faysal last updated on 19/Nov/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{fifth}\:\mathrm{powers}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{x}−\mathrm{1}=\mathrm{0}\:\mathrm{by} \\ $$$$\mathrm{applying}\:\mathrm{synthetic}\:\mathrm{division} \\ $$ Commented by mr W last updated on…

Find-the-cardano-s-solution-of-the-equation-28x-3-9x-2-1-0-

Question Number 200460 by faysal last updated on 19/Nov/23 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{cardano}'\mathrm{s}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{equation}\:\mathrm{28x}^{\mathrm{3}} −\mathrm{9x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ Answered by Frix last updated on 19/Nov/23 $$\mathrm{28}{x}^{\mathrm{3}} −\mathrm{9}{x}^{\mathrm{2}}…

Let-u-n-k-1-n-n-n-2-k-2-for-n-N-gt-0-Show-that-u-n-n-gt-0-is-increasing-

Question Number 200521 by brahim_mekkaoui last updated on 19/Nov/23 $$\mathrm{Let}\:{u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{n}}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} }\:\:\mathrm{for}\:{n}\in\mathbb{N}_{>\mathrm{0}} \:\:. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\left({u}_{{n}} \right)_{{n}>\mathrm{0}} \:\mathrm{is}\:\mathrm{increasing}. \\ $$ Terms of Service…