Menu Close

Author: Tinku Tara

Question-200319

Question Number 200319 by sonukgindia last updated on 17/Nov/23 Answered by Sutrisno last updated on 17/Nov/23 $$=\int_{\mathrm{0}} ^{\pi} \frac{\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}}{\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}+\frac{{sin}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} {x}}}{dx} \\ $$$$=\int_{\mathrm{0}}…

ab-b-ba-a-cde-ab-b-ba-a-f-a-b-c-d-e-f-are-all-different-and-in-some-order-consecutive-also-Determine-the-remain

Question Number 200315 by Rasheed.Sindhi last updated on 17/Nov/23 $$\:\begin{cases}{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}+\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{cde}\:}}\\{\overline {\:{ab}\:}\centerdot\overline {\:{b}\:}−\overline {\:{ba}\:}\centerdot\overline {\:{a}\:}=\overline {\:{f}\:}\:}\end{cases} \\ $$$${a},{b},{c},{d},{e},{f}\:{are}\:{all}\:{different}\:{and}\:{in} \\ $$$${some}\:{order}\:{consecutive}\:{also}. \\…

Question-200309

Question Number 200309 by sonukgindia last updated on 17/Nov/23 Answered by Mathspace last updated on 17/Nov/23 $${J}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{asinx}\:+\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\frac{{e}^{{ix}}…

Question-200366

Question Number 200366 by ajfour last updated on 17/Nov/23 Commented by ajfour last updated on 17/Nov/23 $${The}\:{red}\:{circular}\:{arc}\:{length}\:{is}\:{equal} \\ $$$$\:{to}\:{blue}\:{arclength}\:\:{of}\:{parabola}.\:{Find}\: \\ $$$${the}\:{equation}\:{of}\:{parabola}\:{in}\:{the}\:{form}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{y}={ax}^{\mathrm{2}} +{c}. \\…

Question-200356

Question Number 200356 by sonukgindia last updated on 17/Nov/23 Commented by mr W last updated on 17/Nov/23 $${i}\:{guess}\:{you}\:{meant}\:{that}\:{the}\:{plane}\: \\ $$$${x}+\mathrm{8}{y}−\mathrm{4}{z}+{k}=\mathrm{0}\:{should}\:{touch}\:{the} \\ $$$${sphere}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{y}−\mathrm{3}=\mathrm{0}.…

If-the-roots-of-x-3-3px-2-3qx-r-0-are-in-harmonic-progression-then-prove-that-2q-3-r-3pq-r-

Question Number 200353 by faysal last updated on 17/Nov/23 $$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{3px}^{\mathrm{2}} +\mathrm{3qx}+\mathrm{r}=\mathrm{0}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{harmonic}\:\mathrm{progression},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{2q}^{\mathrm{3}} =\mathrm{r}\left(\mathrm{3pq}−\mathrm{r}\right) \\ $$ Answered by jabarsing last updated on…