Menu Close

Author: Tinku Tara

Question-200048

Question Number 200048 by Calculusboy last updated on 12/Nov/23 Commented by 0670322918 last updated on 13/Nov/23 $$\int\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\int{tan}^{−\mathrm{1}} \left({x}\right){dx}}{dx}= \\ $$$${f}\left({x}\right)=\int{tan}^{−\mathrm{1}} \left({x}\right){dx}={xtan}^{−\mathrm{1}} \left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{c} \\…

By-strong-induction-prove-that-any-natural-number-equal-to-or-bigger-than-8-can-be-written-as-3a-5b-where-a-and-b-are-non-negative-integers-

Question Number 200041 by depressiveshrek last updated on 12/Nov/23 $${By}\:{strong}\:{induction}\:{prove}\:{that}\:{any} \\ $$$${natural}\:{number}\:{equal}\:{to}\:{or}\:{bigger}\:{than} \\ $$$$\mathrm{8}\:{can}\:{be}\:{written}\:{as}\:\mathrm{3}{a}+\mathrm{5}{b}\:{where}\:{a}\:{and}\:{b} \\ $$$${are}\:{non}−{negative}\:{integers}. \\ $$ Answered by des_ last updated on 12/Nov/23…

Question-200035

Question Number 200035 by ajfour last updated on 12/Nov/23 Commented by ajfour last updated on 12/Nov/23 $${Find}\:{equation}\:{of}\:{parabola}\:{having}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{same}\:{curvature}\:{as}\:\mathrm{sin}\:{x}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{at}\:{shown}\:{point} \\ $$ Commented by…

Question-200025

Question Number 200025 by cortano12 last updated on 12/Nov/23 Answered by Frix last updated on 12/Nov/23 $$\left(\mathrm{1}\right)\:\:\:\:\:\sqrt{{t}+\mathrm{8}}+\sqrt{{t}}=\mathrm{4}\:\Rightarrow\:{t}=\mathrm{1}\:\Rightarrow\:{y}=\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{Transforming}\:\left(\mathrm{2}\right)\:\mathrm{to} \\ $$$${x}^{\mathrm{3}} \left({x}+\mathrm{13}\right)\sqrt{{x}+\mathrm{1}}=\mathrm{6}{x}^{\mathrm{4}} +\mathrm{14}{x}^{\mathrm{3}} +\mathrm{8} \\…

solve-the-associated-legendre-equation-l-l-1-2-l-0-1-2-and-m-2-l-l-1-which-requires-l-m-l-using-power-series-

Question Number 200022 by jlewis last updated on 12/Nov/23 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{associated}\:\mathrm{legendre}\:\mathrm{equation} \\ $$$$\lambda={l}\:\left({l}+\mathrm{1}\right)\eta^{\mathrm{2}} \:;{l}=\mathrm{0},\mathrm{1},\mathrm{2}…\:\:\:{and}\:{m}^{\mathrm{2}} \leqslant\:{l}\left({l}+\mathrm{1}\right)\: \\ $$$${which}\:{requires}\:−{l}\leqslant{m}\leqslant{l}\:\mathrm{using}\:\mathrm{power}\:\mathrm{series} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com