Question Number 200048 by Calculusboy last updated on 12/Nov/23 Commented by 0670322918 last updated on 13/Nov/23 $$\int\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{\int{tan}^{−\mathrm{1}} \left({x}\right){dx}}{dx}= \\ $$$${f}\left({x}\right)=\int{tan}^{−\mathrm{1}} \left({x}\right){dx}={xtan}^{−\mathrm{1}} \left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+{c} \\…
Question Number 200040 by mnjuly1970 last updated on 12/Nov/23 $$ \\ $$$$\:\:\:\:\:{Q}:\:\:{If}\:\:,\:\:{tan}\left(\frac{\pi}{\mathrm{4}}\:−\alpha\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\Rightarrow{Find}\:{the}\:{value}\:{of}\:,\:{tan}\left(\mathrm{4}\alpha\right)=? \\ $$$$ \\ $$ Answered by witcher3 last updated on 12/Nov/23…
Question Number 200041 by depressiveshrek last updated on 12/Nov/23 $${By}\:{strong}\:{induction}\:{prove}\:{that}\:{any} \\ $$$${natural}\:{number}\:{equal}\:{to}\:{or}\:{bigger}\:{than} \\ $$$$\mathrm{8}\:{can}\:{be}\:{written}\:{as}\:\mathrm{3}{a}+\mathrm{5}{b}\:{where}\:{a}\:{and}\:{b} \\ $$$${are}\:{non}−{negative}\:{integers}. \\ $$ Answered by des_ last updated on 12/Nov/23…
Question Number 200035 by ajfour last updated on 12/Nov/23 Commented by ajfour last updated on 12/Nov/23 $${Find}\:{equation}\:{of}\:{parabola}\:{having}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:{same}\:{curvature}\:{as}\:\mathrm{sin}\:{x}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{at}\:{shown}\:{point} \\ $$ Commented by…
Question Number 200025 by cortano12 last updated on 12/Nov/23 Answered by Frix last updated on 12/Nov/23 $$\left(\mathrm{1}\right)\:\:\:\:\:\sqrt{{t}+\mathrm{8}}+\sqrt{{t}}=\mathrm{4}\:\Rightarrow\:{t}=\mathrm{1}\:\Rightarrow\:{y}=\frac{\mathrm{1}}{{x}} \\ $$$$\mathrm{Transforming}\:\left(\mathrm{2}\right)\:\mathrm{to} \\ $$$${x}^{\mathrm{3}} \left({x}+\mathrm{13}\right)\sqrt{{x}+\mathrm{1}}=\mathrm{6}{x}^{\mathrm{4}} +\mathrm{14}{x}^{\mathrm{3}} +\mathrm{8} \\…
Question Number 200022 by jlewis last updated on 12/Nov/23 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{associated}\:\mathrm{legendre}\:\mathrm{equation} \\ $$$$\lambda={l}\:\left({l}+\mathrm{1}\right)\eta^{\mathrm{2}} \:;{l}=\mathrm{0},\mathrm{1},\mathrm{2}…\:\:\:{and}\:{m}^{\mathrm{2}} \leqslant\:{l}\left({l}+\mathrm{1}\right)\: \\ $$$${which}\:{requires}\:−{l}\leqslant{m}\leqslant{l}\:\mathrm{using}\:\mathrm{power}\:\mathrm{series} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200019 by hardmath last updated on 12/Nov/23 Answered by mr W last updated on 12/Nov/23 Commented by hardmath last updated on 12/Nov/23 $$\mathrm{very}\:\mathrm{nice}\:\mathrm{dear}\:\mathrm{pfofessor}……
Question Number 200012 by hardmath last updated on 12/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 200013 by hardmath last updated on 12/Nov/23 Commented by mr W last updated on 12/Nov/23 $${geometry}\:{is}\:{not}\:{like}\:{a}\:{novel}.\:{geometry} \\ $$$${is}\:{best}\:{with}\:{diagram},\:{not}\:{with}\:{only} \\ $$$${text}. \\ $$ Commented…
Question Number 200010 by Lekhraj last updated on 12/Nov/23 Terms of Service Privacy Policy Contact: info@tinkutara.com