Menu Close

Author: Tinku Tara

Prove-0-1-2-arcsin-2-x-x-dx-pii-6-pi-2-36-Li-2-1-i-3-2-1-3-3-

Question Number 222858 by MrGaster last updated on 09/Jul/25 $$\mathrm{Prove}: \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{arcsin}^{\mathrm{2}} {x}}{{x}}{dx}=\frac{\pi{i}}{\mathrm{6}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{36}}−\mathrm{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)−\frac{\mathrm{1}}{\mathrm{3}}\zeta\left(\mathrm{3}\right) \\ $$ Commented by gabthemathguy25 last updated on…

0-x-x-e-x-1-x-dx-

Question Number 222850 by MrGaster last updated on 09/Jul/25 $$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−{x}} {e}^{−{x}} }{\Gamma\left(\mathrm{1}−{x}\right)}{dx} \\ $$ Answered by MrGaster last updated on 09/Jul/25 $$\Gamma\left(\mathrm{1}−{x}\right)\Gamma\left({x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi{x}\right)} \\…

vector-field-F-R-3-R-3-F-h-C-and-Let-s-define-as-A-F-can-we-find-vector-field-F-Curl-and-Divergence-inverse-operator-dose-exist-1-A-

Question Number 222828 by wewji12 last updated on 09/Jul/25 $$\mathrm{vector}\:\mathrm{field}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \:,\:{F}_{{h}} \in\mathcal{C}^{\omega} \\ $$$$\mathrm{and}\:\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:\mathrm{as}\:\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}=\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}} \\ $$$$\mathrm{can}\:\mathrm{we}\:\mathrm{find}\:\mathrm{vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}…..??? \\ $$$$\mathrm{Curl}\:\mathrm{and}\:\mathrm{Divergence}\:\:\mathrm{inverse}\:\mathrm{operator}\:\mathrm{dose}\:\mathrm{exist}?? \\…

Question-222812

Question Number 222812 by MrGaster last updated on 08/Jul/25 Answered by MrGaster last updated on 08/Jul/25 $${x}=\mathrm{sinh}\:{u}\Rightarrow{dx}=\mathrm{cosh}\:{udu},\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }=\mathrm{cosh}\:{u} \\ $$$${u}\mid_{{x}=\mathrm{0}} =\mathrm{0},{u}\mid_{{x}=\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{sinh}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${u}=\mathrm{sinh}^{−\mathrm{1}}…

If-f-x-3x-x-2x-Find-lim-x-5-f-x-lim-x-5-f-x-

Question Number 222829 by hardmath last updated on 08/Jul/25 $$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\left[\mathrm{x}\right]}{\mathrm{2x}} \\ $$$$\mathrm{Find}\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{+} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:−\:\underset{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{5}^{−} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$ Answered by mehdee7396 last updated on 08/Jul/25…

Question-222830

Question Number 222830 by Tawa11 last updated on 08/Jul/25 Answered by Frix last updated on 08/Jul/25 $$\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}…= \\ $$$$=\frac{\mathrm{32}}{\mathrm{9}}\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}\frac{{i}^{\mathrm{3}} }{{k}^{\mathrm{4}} }+\mathrm{120}\underset{{i}=\mathrm{1}}…

Prove-J-0-2x-dx-1-

Question Number 222805 by MrGaster last updated on 08/Jul/25 $$\mathrm{Prove}:\int_{−\infty} ^{\infty} {J}_{\mathrm{0}} \left(\mathrm{2}{x}\right){dx}=\mathrm{1} \\ $$ Answered by MrGaster last updated on 08/Jul/25 $${J}_{\mathrm{0}} \left(\mathrm{2}{x}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{−\pi} ^{\pi}…