Question Number 197811 by Noorzai last updated on 30/Sep/23 Commented by mr W last updated on 30/Sep/23 $${you}\:{didn}'{t}\:{ask}\:{a}\:{question}!\:{what}'{s}\:{your} \\ $$$${question}? \\ $$ Commented by mokys…
Question Number 197838 by hardmath last updated on 30/Sep/23 Answered by MM42 last updated on 30/Sep/23 $$\frac{\mathrm{2}^{\mathrm{49}} }{\mathrm{2}^{\mathrm{49}} +\mathrm{1}}+\frac{\mathrm{2}^{\mathrm{48}} }{\mathrm{2}^{\mathrm{48}} +\mathrm{1}}+…+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{48}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{49}} +\mathrm{1}} \\ $$$$=\mathrm{1}+\mathrm{1}+…+\mathrm{1}=\:\mathrm{49}\:\checkmark…
Question Number 197832 by mathlove last updated on 30/Sep/23 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}+\sqrt{{cosx}}}{−\mathrm{1}+\sqrt{{cosx}}}=? \\ $$ Answered by MM42 last updated on 30/Sep/23 $${let}\:\:{f}\left({x}\right)=\frac{\mathrm{2}+\sqrt{{cosx}}}{−\mathrm{1}+\sqrt{{cosx}}} \\ $$$${for}\:\:{a}_{{n}} =\mathrm{2}{n}\pi\Rightarrow{lim}_{{n}\rightarrow\infty} \:{f}\left({a}_{{n}}…
Question Number 197834 by ajfour last updated on 30/Sep/23 Answered by mr W last updated on 01/Oct/23 Commented by mr W last updated on 03/Oct/23…
Question Number 197805 by Noorzai last updated on 29/Sep/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 197802 by cortano12 last updated on 29/Sep/23 $$\:\:\:\mathrm{I}=\underset{−\mathrm{2}} {\overset{\mathrm{6}} {\int}}\:\frac{\mid\mathrm{x}−\mathrm{1}\mid}{\mathrm{x}−\mathrm{1}}\:\mathrm{dx}\:=? \\ $$ Answered by MM42 last updated on 29/Sep/23 $${I}=\int_{−\mathrm{2}} ^{\mathrm{1}} −{dx}+\int_{\mathrm{1}} ^{\mathrm{6}}…
Question Number 197808 by mokys last updated on 29/Sep/23 $${prove}\:\underset{{n}\rightarrow\infty} {{lim}}\:{x}^{{n}} \:=\:\mathrm{0}\:\:\:\:{when}\:\mid{x}\mid\:<\:\mathrm{1} \\ $$ Commented by Noorzai last updated on 30/Sep/23 $${please}\:{give}\:{more}\:{information}\: \\ $$ Answered…
Question Number 197795 by cortano12 last updated on 29/Sep/23 Answered by AST last updated on 29/Sep/23 $${Let}\:{y}={px};{x}\left({p}+\mathrm{1}\right)={x}^{\mathrm{2}} \left(\mathrm{1}+{p}^{\mathrm{2}} \right)\:;{x}\neq\mathrm{0}\Rightarrow{p}^{\mathrm{2}} ={p}\Rightarrow{p}=\mathrm{0}\:{or}\:\mathrm{1} \\ $$$${p}=\mathrm{0}\Rightarrow{y}=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} ={x}\Rightarrow{x}=\mathrm{1} \\ $$$${p}=\mathrm{1}\Rightarrow\mathrm{2}{x}=\mathrm{2}{x}^{\mathrm{2}}…
Question Number 197784 by cortano12 last updated on 28/Sep/23 $$\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\right)}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{5}+\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\left(\mathrm{1}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\right)}\:=\:\mathrm{5} \\ $$ Answered by Frix last updated on 28/Sep/23 $$\mathrm{Let}\:{x}={t}^{\mathrm{3}} +\mathrm{3} \\ $$$$\sqrt[{\mathrm{3}}]{\left({t}+\mathrm{1}\right)^{\mathrm{3}} }+\sqrt[{\mathrm{3}}]{{t}^{\mathrm{3}} +\mathrm{12}{t}^{\mathrm{2}}…
Question Number 197783 by pticantor last updated on 28/Sep/23 $$\int\frac{{x}.\boldsymbol{{arctg}}\left(\boldsymbol{{x}}\right)}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\boldsymbol{{dx}}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ Answered by EmGent last…