Menu Close

Author: Tinku Tara

sir-number-of-3-digit-numbers-which-are-divisible-by-a-3-b-4-c-6-d-7-e-8-f-9-g-11-when-repetetion-is-1-Allowwd-2-Not-allowed-kindly-help-me-sir-

Question Number 197564 by SLVR last updated on 21/Sep/23 $${sir}…{number}\:{of}\:\mathrm{3}\:{digit} \\ $$$${numbers}\:{which}\:{are}\:{divisible} \\ $$$${by}\: \\ $$$$\left.{a}\left.\right)\left.\mathrm{3}\left.\:\left.\:\left.{b}\left.\right)\mathrm{4}\:\:{c}\right)\mathrm{6}\:\:{d}\right)\mathrm{7}\:\:{e}\right)\mathrm{8}\:\:{f}\right)\mathrm{9}\:\:{g}\right)\mathrm{11} \\ $$$${when}\:{repetetion}\:{is} \\ $$$$\left.\mathrm{1}\left.\right){Allowwd}\:\:\mathrm{2}\right){Not}\:{allowed}.. \\ $$$${kindly}\:{help}\:{me}\:{sir} \\ $$ Commented…

lim-x-4x-4x-2-5-2x-1-bx-

Question Number 197548 by cortano12 last updated on 21/Sep/23 $$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{4x}−\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{5}}}{\mathrm{2x}−\mathrm{1}}\right)^{\mathrm{bx}} =?\: \\ $$ Answered by MM42 last updated on 21/Sep/23 $${lim}_{{x}\rightarrow−\infty} \:\left(\frac{\mathrm{4}{x}−\mid\mathrm{2}{x}\mid}{\mathrm{2}{x}−\mathrm{1}}\right)^{{bx}} ={lim}_{{x}\rightarrow−\infty}…

Calcul-I-pi-2-0-ln-cost-1-sin-2-t-dt-

Question Number 197550 by Erico last updated on 21/Sep/23 $$\mathrm{Calcul}\:\:\:\mathrm{I}=\underset{\:\mathrm{0}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{ln}\left(\mathrm{cost}\right)}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \mathrm{t}}\mathrm{dt} \\ $$ Answered by qaz last updated on 22/Sep/23 $${I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\mathrm{cos}\:{t}}{\mathrm{2}−\mathrm{cos}\:^{\mathrm{2}}…

let-f-n-x-nsin-2n-1-x-cos-x-then-the-value-of-lim-n-0-pi-2-f-n-x-dx-0-pi-2-lim-n-f-n-x-dx-

Question Number 197562 by universe last updated on 21/Sep/23 $$\:\:\mathrm{let}\:\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:=\:\mathrm{nsin}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\:\mathrm{dx}\:−\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}_{\mathrm{n}} \left(\mathrm{x}\right)\right)\mathrm{dx}\:\:\:=\:\:?\: \\ $$ Terms…