Menu Close

Author: Tinku Tara

lim-x-sin-1-x-2-3-2-2x-2-3x-1-

Question Number 197482 by cortano12 last updated on 19/Sep/23 $$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{3}}\:+\mathrm{2}}{\mathrm{2x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{1}}\:\right)=?\: \\ $$ Answered by Frix last updated on 19/Sep/23 $${f}\left({x}\right)=\frac{\sqrt{\mathrm{3}}{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}^{\mathrm{2}}…

lim-x-tan-1-x-1-x-

Question Number 197483 by cortano12 last updated on 19/Sep/23 $$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{x}}}\:=? \\ $$ Answered by Frix last updated on 19/Sep/23 $$=\frac{−\frac{\pi}{\mathrm{2}}}{\:\sqrt{\mathrm{1}+\infty}}=\mathrm{0} \\ $$ Terms…

find-lim-n-U-n-n-3-2n-2-1-3-n-3-3n-2-1-3-

Question Number 197479 by pticantor last updated on 19/Sep/23 $$\boldsymbol{{find}}: \\ $$$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{{li}}\underset{\boldsymbol{{n}}\rightarrow\infty} {\boldsymbol{{m}}}\:\boldsymbol{{U}}_{\boldsymbol{{n}}} \:=\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} +\mathrm{2}\boldsymbol{{n}}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{\boldsymbol{{n}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{n}}^{\mathrm{2}} }\: \\ $$ Commented by Frix…

Question-197452

Question Number 197452 by sonukgindia last updated on 18/Sep/23 Answered by Frix last updated on 18/Sep/23 $${t}=\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{7} \\ $$$$\sqrt{{t}+\mathrm{4}}−\mathrm{2}=\sqrt[{\mathrm{3}}]{\mathrm{2}{t}} \\ $$$$\mathrm{Obviously}\:{t}=−\mathrm{4}\vee{t}=\mathrm{0} \\ $$$${t}=−\mathrm{4}\:\Rightarrow\:{x}=−\frac{\mathrm{3}}{\mathrm{5}}\vee{x}=\mathrm{1} \\…

Solve-the-following-equation-x-2y-2z-0-2x-y-2z-0-3x-4y-6z-0-3x-11y-12z-0-

Question Number 197470 by Mastermind last updated on 18/Sep/23 $${Solve}\:{the}\:{following}\:{equation} \\ $$$${x}\:+\:\mathrm{2}{y}\:+\:\mathrm{2}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{2}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:+\:\mathrm{4}{y}\:−\:\mathrm{6}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:−\:\mathrm{11}{y}\:+\:\mathrm{12}{z}\:=\:\mathrm{0} \\ $$ Answered by MathedUp last updated…

f-x-2x-6-2-6-x-g-x-x-99-x-98-x-97-x-f-g-1-f-g-2-f-g-100-

Question Number 197455 by mathlove last updated on 18/Sep/23 $${f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{6}}{\mathrm{2}}+\mathrm{6}−{x} \\ $$$${g}\left({x}\right)=\sqrt{{x}^{\mathrm{99}} +{x}^{\mathrm{98}} +{x}^{\mathrm{97}} +…..+{x}} \\ $$$${f}\left({g}\left(\mathrm{1}\right)\right)+{f}\left({g}\left(\mathrm{2}\right)\right)+………+{f}\left({g}\left(\mathrm{100}\right)\right)=? \\ $$ Answered by hmr last updated on…

Question-197464

Question Number 197464 by universe last updated on 18/Sep/23 Answered by witcher3 last updated on 19/Sep/23 $$\mathrm{claim} \\ $$$$\frac{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{6}} }{\left(\mathrm{ab}\right)^{\mathrm{2}} }\geqslant\mathrm{32}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)….\mathrm{P},\mathrm{by}\:\mathrm{symetri}\:\mathrm{a}\geqslant\mathrm{b} \\ $$$$\left.\mathrm{a}\left.=\mathrm{tb},\mathrm{t}\in\right]\mathrm{0},\mathrm{1}\right]…