Menu Close

Author: Tinku Tara

Question-196983

Question Number 196983 by universe last updated on 05/Sep/23 Commented by Frix last updated on 06/Sep/23 $$\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{first}\:\mathrm{2}\:\mathrm{but}\:\mathrm{wolframalpha}\:\mathrm{can} \\ $$$$\left(\mathrm{C}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Catalan}\:\mathrm{constant}\right) \\ $$$$\mathrm{1}.\:{I}_{\mathrm{1}} =\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{{x}^{\mathrm{3}} }{…}{dx}=\frac{\pi\left(−\mathrm{1440C}+\mathrm{1144}+\mathrm{15}\pi\left(−\mathrm{41}+\mathrm{20}\pi+\mathrm{24ln}\:\mathrm{2}\right)\right)}{\mathrm{3780}}…

Question-196972

Question Number 196972 by otchereabdullai@gmail.com last updated on 05/Sep/23 Answered by Frix last updated on 05/Sep/23 $${t}=\mathrm{tan}\:\theta \\ $$$$\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}\left(\mathrm{14}{t}^{\mathrm{2}} +\mathrm{9}{t}−\mathrm{14}\right)=\mathrm{0} \\ $$$${t}=−\frac{\mathrm{9}}{\mathrm{28}}\pm\frac{\sqrt{\mathrm{865}}}{\mathrm{28}} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}}…

Question-196973

Question Number 196973 by sonukgindia last updated on 05/Sep/23 Answered by Frix last updated on 05/Sep/23 $$\mathrm{We}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:\mathrm{the}\:\mathrm{approximate}\:\mathrm{solution}. \\ $$$${x}^{\mathrm{5}} −\mathrm{5}{x}−\mathrm{3}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −{x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)=\mathrm{0}…

Question-196968

Question Number 196968 by sonukgindia last updated on 05/Sep/23 Answered by MM42 last updated on 05/Sep/23 $${if}\:\:{x},{y}\in\:\mathbb{R} \\ $$$$\begin{cases}{\mathrm{5}{s}−{p}=\mathrm{10}+\mathrm{7}\sqrt{\mathrm{3}}}\\{{s}^{\mathrm{2}} −\mathrm{2}{p}=\mathrm{7}}\end{cases} \\ $$$$\Rightarrow{s}^{\mathrm{2}} +\mathrm{10}{s}−\mathrm{27}−\mathrm{14}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow{s}=\mathrm{2}+\sqrt{\mathrm{3}\:}\Rightarrow{p}=\mathrm{2}\sqrt{\mathrm{3}}\:…

solve-3x-2-9y-1-3y-2-9x-0-

Question Number 196971 by dimentri last updated on 05/Sep/23 $$\:\:{solve}\:\begin{cases}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{9}{y}=\mathrm{1}}\\{\mathrm{3}{y}^{\mathrm{2}} −\mathrm{9}{x}=\mathrm{0}}\end{cases} \\ $$ Answered by Frix last updated on 05/Sep/23 $${y}=\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{9}} \\ $$$${x}^{\mathrm{4}}…

Question-196964

Question Number 196964 by Mingma last updated on 05/Sep/23 Answered by Rasheed.Sindhi last updated on 05/Sep/23 $${x}+{y}=−\mathrm{9}\:\wedge\:{x}+\mathrm{2}{y}=−\mathrm{25} \\ $$$$\Rightarrow{x}+\mathrm{2}\left(−\mathrm{9}−{x}\right)=−\mathrm{25} \\ $$$$\:\:\:\:{x}−\mathrm{2}{x}=−\mathrm{25}+\mathrm{18}=−\mathrm{7} \\ $$$$\:\:\:\:\:\:\:{x}=\mathrm{7} \\ $$…