Menu Close

Author: Tinku Tara

0-lnt-2-1-t-2-dt-

Question Number 196026 by Erico last updated on 16/Aug/23 $$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \frac{\left({lnt}\right)^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ Answered by sniper237 last updated on 16/Aug/23 $$=\:{f}''\left(\mathrm{0}\right)\:\:\:{with}\:\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty}…

sin-2x-sin-3-x-cos-3-x-dx-

Question Number 196037 by cortano12 last updated on 16/Aug/23 $$\:\:\:\int\:\frac{\mathrm{sin}\:\mathrm{2x}}{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$ Answered by Frix last updated on 16/Aug/23 $$\mathrm{Use}\:{t}=\mathrm{sin}\:\left({x}−\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow\:{dx}=\frac{{dt}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\:\mathrm{to}\:\mathrm{get} \\ $$$$\sqrt{\mathrm{2}}\int\frac{\mathrm{2}{t}^{\mathrm{2}}…

find-the-domain-of-definition-of-this-function-for-t-0-1-x-x-2x-1-lnt-dt-ptiCantor-

Question Number 196023 by pticantor last updated on 16/Aug/23 $${find}\:{the}\:{domain}\:{of}\:{definition}\:{of}\:{this} \\ $$$$\left.{function}\:{for}\:{t}\in\right]\mathrm{0};\mathrm{1}\left[\right. \\ $$$$\:\:\:\:\:\boldsymbol{\rho}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \frac{\mathrm{1}}{{lnt}}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{ptiCantor} \\ $$ Answered by sniper237 last updated…

Question-195996

Question Number 195996 by sonukgindia last updated on 15/Aug/23 Answered by Rasheed.Sindhi last updated on 15/Aug/23 $${Let}\:{radius}\:{of}\:{blue}\:{quarter}={r} \\ $$$${and}\:{of}\:{green}={R} \\ $$$${R}={r}+\mathrm{1} \\ $$$${Diagonal}={R}+{r} \\ $$$$\left({R}+{r}\right)^{\mathrm{2}}…

We-can-transform-to-get-rid-of-the-1-3-a-1-3-b-1-3-c-1-3-a-1-3-b-1-3-3-c-a-b-3a-1-3-b-1-3-a-1-3-b-1-3-c-3a-1-3-b-1-3-c-1-3-c-a-b-27abc-c-a-b-3-Is-it-

Question Number 195998 by Frix last updated on 15/Aug/23 $$\mathrm{We}\:\mathrm{can}\:\mathrm{transform}\:\mathrm{to}\:\mathrm{get}\:\mathrm{rid}\:\mathrm{of}\:\mathrm{the}\:\sqrt[{\mathrm{3}}]{…} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} ={c}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\left({a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)^{\mathrm{3}} ={c} \\ $$$${a}+{b}+\mathrm{3}{a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} \left({a}^{\frac{\mathrm{1}}{\mathrm{3}}} +{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)={c}…

x-y-z-x-2-y-2-1-x-0-0-lt-z-lt-y-1-calculer-I-xyzdxdydz-please-i-need-help-

Question Number 195995 by pticantor last updated on 15/Aug/23 $$\Delta=\left\{\left(\bar {{x}}\:{y}\:{z}\right),\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\mathrm{1},\:{x}\geqslant\mathrm{0},\mathrm{0}<{z}<{y}+\mathrm{1}\right\} \\ $$$${calculer}\:\boldsymbol{{I}}=\int\int\int_{\Delta} {xyzdxdydz} \\ $$$${please}\:{i}\:{need}\:{help} \\ $$ Answered by aleks041103 last updated…

quel-est-la-transformer-de-Fourier-de-la-fonction-suivante-f-x-e-x-2-2-Find-the-Fourier-transform-of-the-following-fonction-

Question Number 196013 by pticantor last updated on 15/Aug/23 $${quel}\:{est}\:{la}\:{transformer}\:{de}\:{Fourier}\:{de}\:{la}\:{fonction} \\ $$$${suivante}: \\ $$$${f}\left({x}\right)=\boldsymbol{{e}}^{−\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\boldsymbol{{F}}{ind}\:{the}\:{Fourier}\:{transform}\:{of}\:{the}\: \\ $$$${following}\:{fonction}. \\ $$ Answered by witcher3 last…