Question Number 195681 by sonukgindia last updated on 07/Aug/23 Answered by Frix last updated on 07/Aug/23 $$=\frac{\mathrm{2}×\mathrm{3}×…×\mathrm{98}}{\mathrm{4}×\mathrm{5}×…×\mathrm{100}}=\mathrm{6}×\frac{\mathrm{98}!}{\mathrm{100}!}=\frac{\mathrm{6}}{\mathrm{99}×\mathrm{100}}=\frac{\mathrm{1}}{\mathrm{1650}} \\ $$ Answered by MM42 last updated on…
Question Number 195680 by sakibul last updated on 07/Aug/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 195666 by uchihayahia last updated on 07/Aug/23 $$ \\ $$$$\:{sequence}\:{of}\:{string}\:{said}\:{to}\:{be}\:{orderly} \\ $$$$\:{if}\:{element}\:{index}\:{i}\:{different}\:{to}\:{i}+\mathrm{1} \\ $$$$\:{for}\:{example} \\ $$$$\:{aba}\:{has}\:{orderly}\:{value}\:\mathrm{2} \\ $$$$\:{abab}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{abaabb}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{if}\:{there}\:{are}\:\mathrm{7}\:{a}\:{and}\:\mathrm{13}\:{b} \\…
Question Number 195647 by mathlove last updated on 06/Aug/23 $${f}\left({x}\right)=\frac{\mathrm{1276}}{\left({x}−\mathrm{1}\right)^{{ln}\frac{\mathrm{2}}{\mathrm{4589}}} } \\ $$$${domain}\:{f}\left({x}\right)=? \\ $$ Answered by Tokugami last updated on 17/Sep/23 $$\frac{\mathrm{1276}}{\left({x}−\mathrm{1}\right)^{\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{ln}\left(\mathrm{4589}\right)} }=\mathrm{1276}\left({x}−\mathrm{1}\right)^{\mathrm{ln}\left(\mathrm{4589}\right)−\mathrm{ln}\left(\mathrm{2}\right)} \\…
Question Number 195661 by otchereabdullai@gmail.com last updated on 06/Aug/23 Commented by otchereabdullai@gmail.com last updated on 07/Aug/23 $${thanks}\:{prof} \\ $$ Commented by mr W last updated…
Question Number 195660 by otchereabdullai@gmail.com last updated on 06/Aug/23 Commented by otchereabdullai@gmail.com last updated on 07/Aug/23 $${x} \\ $$ Commented by som(math1967) last updated on…
Question Number 195628 by mr W last updated on 06/Aug/23 $$\underline{{an}\:{unsolved}\:{old}\:{question}\:#\mathrm{190875}} \\ $$$${a},\:{b},\:{c}\:{are}\:{real}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\mathrm{0}. \\ $$$${find}\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{c}}}=? \\ $$ Commented by Frix last…
Question Number 195627 by Boazmbura last updated on 06/Aug/23 $$\mathrm{2}+\mathrm{2} \\ $$ Commented by Frix last updated on 06/Aug/23 $${x}=\mathrm{2}+\mathrm{2}\:\Rightarrow\:\mathrm{3}.\mathrm{97}<{x}<\mathrm{4}.\mathrm{015} \\ $$ Terms of Service…
Question Number 195653 by mustafazaheen last updated on 06/Aug/23 Answered by MM42 last updated on 06/Aug/23 $${e}−\mathrm{1}>\mathrm{1}\:\:\: \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{+} } \:\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =\infty \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{−} }…
Question Number 195652 by mustafazaheen last updated on 06/Aug/23 $$ \\ $$$$\mathrm{e}^{\mathrm{x}+\mathrm{y}} −\mathrm{e}^{\mathrm{x}−\mathrm{y}} =\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$ Answered by MM42…