Menu Close

Author: Tinku Tara

Question-195681

Question Number 195681 by sonukgindia last updated on 07/Aug/23 Answered by Frix last updated on 07/Aug/23 $$=\frac{\mathrm{2}×\mathrm{3}×…×\mathrm{98}}{\mathrm{4}×\mathrm{5}×…×\mathrm{100}}=\mathrm{6}×\frac{\mathrm{98}!}{\mathrm{100}!}=\frac{\mathrm{6}}{\mathrm{99}×\mathrm{100}}=\frac{\mathrm{1}}{\mathrm{1650}} \\ $$ Answered by MM42 last updated on…

sequence-of-string-said-to-be-orderly-if-element-index-i-different-to-i-1-for-example-aba-has-orderly-value-2-abab-has-orderly-value-3-abaabb-has-orderly-value-3-if-there-are-7-a-and-13-b-exa

Question Number 195666 by uchihayahia last updated on 07/Aug/23 $$ \\ $$$$\:{sequence}\:{of}\:{string}\:{said}\:{to}\:{be}\:{orderly} \\ $$$$\:{if}\:{element}\:{index}\:{i}\:{different}\:{to}\:{i}+\mathrm{1} \\ $$$$\:{for}\:{example} \\ $$$$\:{aba}\:{has}\:{orderly}\:{value}\:\mathrm{2} \\ $$$$\:{abab}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{abaabb}\:{has}\:{orderly}\:{value}\:\mathrm{3} \\ $$$$\:{if}\:{there}\:{are}\:\mathrm{7}\:{a}\:{and}\:\mathrm{13}\:{b} \\…

f-x-1276-x-1-ln-2-4589-domain-f-x-

Question Number 195647 by mathlove last updated on 06/Aug/23 $${f}\left({x}\right)=\frac{\mathrm{1276}}{\left({x}−\mathrm{1}\right)^{{ln}\frac{\mathrm{2}}{\mathrm{4589}}} } \\ $$$${domain}\:{f}\left({x}\right)=? \\ $$ Answered by Tokugami last updated on 17/Sep/23 $$\frac{\mathrm{1276}}{\left({x}−\mathrm{1}\right)^{\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{ln}\left(\mathrm{4589}\right)} }=\mathrm{1276}\left({x}−\mathrm{1}\right)^{\mathrm{ln}\left(\mathrm{4589}\right)−\mathrm{ln}\left(\mathrm{2}\right)} \\…

an-unsolved-old-question-190875-a-b-c-are-real-roots-of-the-equation-x-3-7x-2-4x-1-0-find-1-a-1-3-1-b-1-3-1-c-1-3-

Question Number 195628 by mr W last updated on 06/Aug/23 $$\underline{{an}\:{unsolved}\:{old}\:{question}\:#\mathrm{190875}} \\ $$$${a},\:{b},\:{c}\:{are}\:{real}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}=\mathrm{0}. \\ $$$${find}\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{b}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{{c}}}=? \\ $$ Commented by Frix last…

2-2-

Question Number 195627 by Boazmbura last updated on 06/Aug/23 $$\mathrm{2}+\mathrm{2} \\ $$ Commented by Frix last updated on 06/Aug/23 $${x}=\mathrm{2}+\mathrm{2}\:\Rightarrow\:\mathrm{3}.\mathrm{97}<{x}<\mathrm{4}.\mathrm{015} \\ $$ Terms of Service…

Question-195653

Question Number 195653 by mustafazaheen last updated on 06/Aug/23 Answered by MM42 last updated on 06/Aug/23 $${e}−\mathrm{1}>\mathrm{1}\:\:\: \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{+} } \:\left({e}−\mathrm{1}\right)^{\frac{\sqrt{\mathrm{3}}}{{x}}} =\infty \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\:\mathrm{0}^{−} }…