Menu Close

Author: Tinku Tara

Question-195206

Question Number 195206 by otchereabdullai@gmail.com last updated on 27/Jul/23 Answered by MM42 last updated on 27/Jul/23 $${p}\left({a}\right)={p}\left({b}\right)={p}\left({c}\right)=\frac{\mathrm{3}}{\mathrm{4}}\:;\:{probability}\:{of}\:{winning}\:{each}\:{race} \\ $$$$\left({i}\right)\:{p}\left({a}'\cap{b}\cap{c}'\right)=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{64}} \\ $$$$\left({ii}\right)\:{p}\left({a}\cap{b}\cap{c}\right)=\frac{\mathrm{27}}{\mathrm{64}} \\ $$$$\left({iii}\right)\:{p}\left(\Sigma{abc}'\right)=\mathrm{3}×\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{9}}{\mathrm{16}}=\frac{\mathrm{27}}{\mathrm{64}} \\ $$…

1-f-x-sinx-pi-2-lt-x-2pi-cosx-0-x-pi-2-then-find-the-f-pi-2-2-f-x-sinx-pi-2-lt-x-2pi-cosx-0-x-pi-2-then-find

Question Number 195180 by mustafazaheen last updated on 26/Jul/23 $$ \\ $$$$\mathrm{1}.\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}^{'} \left(\frac{\pi}{\mathrm{2}}\right)\:=? \\ $$$$\mathrm{2}.\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{sinx}\:\:\:\:\:\:,\:\:\:\:\frac{\pi}{\mathrm{2}}<\mathrm{x}\leqslant\mathrm{2}\pi}\\{\mathrm{cosx}\:\:\:\:\:\:,\:\:\:\:\:\mathrm{0}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{f}'\left(\mathrm{2}\pi\right)\:=? \\ $$$$ \\ $$ Answered by…

find-the-limit-x-a-lim-x-1-3-x-1-2-a-1-3-a-1-2-

Question Number 195195 by Mr.D.N. last updated on 26/Jul/23 $$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{limit}: \\ $$$$\:\underset{\mathrm{x}\rightarrow\mathrm{a}\:} {\overset{\mathrm{lim}} {\:}}\:\:\:\frac{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} }\:−\:\frac{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{3}}} }{\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$ Commented by Frix last updated…

Question-195194

Question Number 195194 by Abdullahrussell last updated on 26/Jul/23 Answered by Frix last updated on 26/Jul/23 $${a}\:\:\:\:\:{b}\:\:\:\:\:{c}\:\:\:\:\:{d} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{3}\:\:\:\:\mathrm{15}\:\:\:\mathrm{10} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{4}\:\:\:\:\mathrm{12}\:\:\:\:\mathrm{6} \\ $$$$\mathrm{2}\:\:\:\:\:\mathrm{6}\:\:\:\:\mathrm{12}\:\:\:\:\mathrm{4} \\ $$$$\mathrm{2}\:\:\:\:\mathrm{10}\:\:\:\mathrm{15}\:\:\:\:\mathrm{3}…

Question-195178

Question Number 195178 by Shlock last updated on 26/Jul/23 Answered by mr W last updated on 26/Jul/23 $${DC}={BC}=\mathrm{2},\:{say} \\ $$$${KD}=\mathrm{1} \\ $$$$\angle{KCD}=\alpha,\:{say} \\ $$$$\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\mathrm{60}°\right)\:\mathrm{tan}\:\left(\mathrm{60}°−\alpha\right)=\mathrm{2}\:\mathrm{sin}\:\mathrm{60}° \\…

Calculer-lim-x-0-sin-x-2-n-1-2-n-sinx-cos-x-2-n-sin-2-x-2-n-

Question Number 195191 by Erico last updated on 26/Jul/23 $$\mathrm{Calculer}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\:\mathrm{lim}}\frac{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }\right)−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\mathrm{sinx}\:\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }\right)}{\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{n}} }\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

1-Montrer-que-0-1-x-2-2p-1-1-x-4p-dx-2-2p-3-p-pi-1-2-k-1-p-1-cos-2p-1-kpi-2p-2-En-de-duire-1-0-1-x-2-2p-1-1-x-4p-dx-

Question Number 195185 by Erico last updated on 26/Jul/23 $$\mathrm{1}/\:\:\mathrm{Montrer}\:\mathrm{que}\:\underset{\:\mathrm{0}} {\int}^{\:+\infty} \:\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{4}{p}} }{dx}=\left(\frac{\mathrm{2}^{\mathrm{2}{p}−\mathrm{3}} }{{p}}\right)\pi\left[\mathrm{1}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\sum}}{cos}^{\mathrm{2}{p}−\mathrm{1}} \left(\frac{{k}\pi}{\mathrm{2}{p}}\right)\right] \\ $$$$\mathrm{2}/\:\:\:\:\mathrm{En}\:\mathrm{d}\acute {\mathrm{e}duire}\:\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}{p}−\mathrm{1}}…