Menu Close

Author: Tinku Tara

Question-194836

Question Number 194836 by sonukgindia last updated on 16/Jul/23 Commented by Frix last updated on 16/Jul/23 $$\mathrm{No}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{possible}. \\ $$$$\mathrm{I}\:\mathrm{get}\:{z}\approx.\mathrm{624520211}−.\mathrm{163489336} \\ $$ Terms of Service Privacy…

tan-19-p-tan-7-

Question Number 194826 by cortano12 last updated on 16/Jul/23 $$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{19}°\:=\:{p}\: \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\mathrm{7}°\:=? \\ $$ Answered by dimentri last updated on 16/Jul/23 $$\:\:\:\mathrm{tan}\:\mathrm{38}°\:=\:\mathrm{tan}\:\left(\mathrm{45}°−\mathrm{7}\right) \\ $$$$\:\:\:\frac{\mathrm{2tan}\:\mathrm{19}°}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\mathrm{19}°}\:=\:\frac{\mathrm{1}−\mathrm{tan}\:\mathrm{7}°}{\mathrm{1}+\mathrm{tan}\:\mathrm{7}°}…

M-a-inside-poin-in-ABC-M-bar-A-area-MBC-B-area-MAC-C-area-MAB-

Question Number 194821 by sniper237 last updated on 16/Jul/23 $${M}\:{a}\:{inside}\:{poin}\:{in}\:\:\Delta{ABC}. \\ $$$${M}\:=\:{bar}\:\left\{\left({A},\:{area}\left({MBC}\right)\right),\:\left({B},\:{area}\left({MAC}\right)\right),\left({C},{area}\left({MAB}\right)\right)\right\} \\ $$ Commented by mr W last updated on 16/Jul/23 $${what}\:{do}\:{mean}\:{with}\:\left({A},\:{area}\left({MBC}\right)\right)? \\ $$$${what}\:{do}\:{mean}\:{with}\:{bar}\:\left\{{X},\:{Y},\:{Z}\right\}?…

Question-194818

Question Number 194818 by sonukgindia last updated on 16/Jul/23 Answered by sniper237 last updated on 16/Jul/23 $$\overset{{x}={u}^{\mathrm{2}} } {=}\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\mathrm{1}−{u}}\:×\left(\mathrm{2}{lnu}\right)×\left(\mathrm{2}{udu}\right) \\ $$$$=\:\mathrm{4}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{u}^{\mathrm{2}−\mathrm{1}}…

suppose-a-b-c-are-positive-real-numbers-prove-the-inequality-a-b-2-b-c-2-c-a-2-a-b-c-3-abc-2-1-3-

Question Number 194808 by York12 last updated on 15/Jul/23 $$ \\ $$$${suppose}\:{a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers} \\ $$$${prove}\:{the}\:{inequality} \\ $$$$\left(\frac{{a}+{b}}{\mathrm{2}}\right)\left(\frac{{b}+{c}}{\mathrm{2}}\right)\left(\frac{{c}+{a}}{\mathrm{2}}\right)\geqslant\left(\frac{{a}+{b}+{c}}{\mathrm{3}}\right)\sqrt[{\mathrm{3}}]{\left({abc}\right)^{\mathrm{2}} } \\ $$ Commented by York12 last updated on…